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Abstract

Difference in Differences (DID) and Change in Change (CIC) require “perfect compliance”:
treatment rate should be 0% in the control group and during period 0 (no “always takers”) and
100% in the treatment group in period 1 (no “never takers”). In many instances, the treatment rate
increases more in the treatment than in the control group but there are never or always takers.
This paper derives identification results which apply to such “fuzzy DID” and “fuzzy CIC” settings.
Its first contribution is that its fuzzy DID identification results only require one common trend
assumption on the outcome (Y) whereas the standard instrumental variable (IV) result usually
invoked in such settings relies on a supplementary common trend assumption on treatment rate
and on a “no defiers” assumption. When there are never takers but no always takers, common trend
on Y is sufficient to identify an ATT as with standard DID. When there are always takers, it is no
longer sufficient but partial identification is still possible provided Y is bounded. It is also possible
to derive a second and narrower identification region under the supplementary assumption that
treatment effects do not change between the two periods in the control group. I use those findings
to measure the efficacy of a new pharmacotherapy for smoking cessation. Its second contribution
is that it is the first paper which considers extending the CIC model to applications with imperfect
compliance. The CIC assumptions are not sufficient for identification when the perfect compliance

assumption is violated. One important exception is when there are no always takers, in which case
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CIC assumptions are sufficient. Otherwise, only partial identification is obtained. Moreover, when
there are always takers but the share of treated observations in the control group remained stable
between period 0 and 1, point identification can be recovered through a slight strengthening of the

CIC assumptions which amounts to defining an IV-CIC model.

Keywords: Difference in Differences, heterogeneous treatment effect, imperfect compliance, partial

identification, smoking cessation, Change in Change, quantile treatment effects
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Introduction

Since the seminal work by Ashenfelter and Card [1985], differences in differences (DID) are
commonly used to estimate average treatment effects on the treated (ATT) when treatment D is not
randomly allocated. DID compare the evolution of some mean outcome Y between two periods (0
and 1) and across two groups of individuals (control and treatment). In Rubin’s causal model where
potential outcomes with and without treatment (Y (1) and Y (0)) are introduced, and where treatment
effects (Y(1) — Y (0)) are allowed to be heterogeneous across observations, it has been shown that a
DID identifies an ATT under two assumptions (see Abadie [2005]). The first one is a common trend
assumption which states that if all observations had remained untreated the mean of Y would have
followed parallel trends from period 0 to 1 in the two groups. The second one, which is implicit,
is a perfect compliance assumption: the treatment rate should be equal to 0% in the control group
and during period 0 (no “always takers”) and to 100% in the treatment group in period 1 (no “never
takers”).! In many instances, this last assumption is violated: the treatment rate (or treatment
intensity if treatment is multivariate) increases more in the treatment than in the control group but
there are “never” or “always” takers.? This differential change in treatment rate / intensity across the
control and the treatment group might still be used to identify an ATT. This is what I refer to as a

fuzzy DID identification strategy.

When compliance is imperfect, common trend alone is not sufficient for identification in a model
allowing for heterogeneous treatment effect. Under common trend on Y (0), if no observation is treated
in any group, trends are parallel in the two groups and the DID is merely equal to 0. In a standard
DID, the only reason why trends might diverge across groups is that observations in the treatment
group X period 1 cell get treated, so that the DID measures the effect of the treatment on them. A
DID computation will therefore yield one equation with only one unknown. In a fuzzy DID, since there

might be treated observations in each of the four time X group cells, diverging trends can potentially

!By never takers, I merely refer to untreated observations in the treatment group in period 1. Always takers are
treated observations in the three other groups.

2This might not be an issue when panel data is available. In this case, researchers can indeed choose observations
making up the treatment and the control group. They can for instance keep only observations of the control group who
were untreated in period 0 and 1, and observations of the treatment group untreated in period 0 and treated in period 1
(see for instance Field [2005]). Despite its arbitrariness, which definition of groups ensures that the perfect compliance
assumption is met. But when only pooled cross-sections are available, it is no longer possible to select observations thus.



arise from the effect of the treatment within each of those four subgroups and a DID computation will
yield one equation with up to four unknowns. The identification problem arises because Y (1) — Y (0) is
allowed to vary across observations, implying that the effect of the treatment might vary across cells.
Assuming Y (1) — Y (0) to be constant across observations would solve the issue: the unknowns in the
DID equation would all be equal to each other so that we would be back to one equation with one

unknown.

Therefore, the starting point of the paper is to show that in a fuzzy DID, when treatment effect is
allowed to be heterogeneous, a common trend assumption on Y (0) is generally not sufficient to identify
some ATT. However, in the special case where there are never takers but no always takers (a situation I
henceforth refer to as the “no always takers” special case), this assumption is sufficient for identification,
as in the standard DID model. Indeed, in such a situation, even though not all observations of the
test group are treated in period 1, there are still treated observations in one group only, so that a DID
computation will yield one equation with one unknown. When there are always takers, common trend
on Y (0) does not allow for point identification, but partial identification of some ATT is still possible
provided Y is bounded. I derive explicit sharp bounds in this case. The identification region is likely
to be narrow enough to identify the sign of this ATT when there are “few” always takers. Whether
there are “many” or “few” never takers does not matter. It is also possible to derive a second and
narrower identification region for the same ATT under the supplementary assumption that treatment
effects do not change between the two periods in the control group. This second identification region
will be narrow when there are few treated observations in the treatment group in period 0, and when

the change in the the treatment rate from period 0 to 1 is small in the control group.

Actually, fuzzy DID has already been used often in the applied economics literature. Up to
now, researchers who implemented it estimated the impact of the treatment through an instrumental
variable (IV) regression using the interaction of time and group as an instrument for treatment. The
resulting coefficient is the DID on Y divided by the DID on D. Duflo [2001] uses this strategy to
estimate the impact of educational attainment on wages. Papers which use differential evolution of
exposure to treatment across US states to estimate treatment effects build upon the same intuition.

A good example is Evans and Ringel [1999] who use changes in cigarette taxes across US states as an



instrument for smoking prevalence among pregnant women, in order to estimate the impact of smoking
during pregnancy on children’s weight. Because their regressions include state and year fixed effects,
their estimate arises from the comparison of the evolution of children’s weight in states with changes
in tax to the same evolution in states with no changes in tax. However, the underlying assumptions
of this identification strategy have not been clarified so far. Imbens and Angrist [1994] have shown
that IV coefficients can be interpreted as a local average treatment effect (LATE) in a model allowing
for heterogeneous treatment effect. I put forward in a companion note (de Chaisemartin [2011]) that
when applied to fuzzy DID their result holds under two common trend assumptions, on Y and on D,
and a monotonicity assumption (no “defiers”). Common trend on Y allows recovering the intention to

treat effect of the policy, whereas common trend on D allows recovering the share of compliers.

Consequently, my fuzzy DID results contribute to the literature because they require only one
common trend assumption on Y. Thus, I remove the monotonicity condition. Even though it is often
thought of as an innocuous assumption, it may be restrictive in some instances as discussed in Small
and Tan [2007]. Above all, they do not require common trend on D. One might argue that the
marginal cost of this second common trend assumption is weaker than for the first: if one is ready
to believe that without the program trends would have been parallel on Y, one should be ready to
take the same assumption on D. However, this might not always be true. For instance, in Evans and
Ringel [1999], it may be the case that states which choose to rise taxes on cigarettes do so because
they face an increasing trend in smoking, whereas there is no reason to suspect that this decision is
related to trends on babies weight at birth. Moreover, even in applications where there is no obvious
reason to suspect that trends on Y or on D would have strongly diverged, there is no reason why
they should have been exactly parallels neither because assignment to treatment is not random. The
most one can reasonably expect is that trends in the untreated group provide a fairly good first order
approximation of what would have happened in the treated group. Results requiring one first order
approximation might therefore be more reliable than results requiring two. The combination of two
small errors in the numerator and in the denominator of the Wald-DID could indeed lead to a large
difference between the Wald-DID and the true treatment effect. Therefore, the first contribution of

this paper is to bring new fuzzy DID identification results which rely on weaker assumptions than the



standard Imbens and Angrist IV result.

Those fuzzy DID results might be useful in applications with no or few always takers. To illustrate
this, I measure the efficacy of a new pharmacotherapy for smoking cessation. Varenicline is a drug which
was made available to French cessation clinics in February 2007 as one possible pharmacotherapy for
smoking cessation support. In 15 services, less than 3% of all patients consulted have been prescribed
varenicline during the year following its release. In 13 services, more than 20% of patients were
prescribed varenicline. Because in this application there are some but few always takers, I derive
bounds for the ATT which are narrow enough to infer its sign. Had there been more always takers, 0
would lie within the identification region. Therefore, in a fuzzy DID, common trend on Y is sufficient
to obtain accurate information on an ATT when there are few always takers, even if there are many
never takers. My results might also be useful in applications considering the extension of a policy, that
is to say when the control group was already eligible in period 0 and the test group became eligible
in period 1 (see for instance Bach [2009]). Indeed, in such situations the share of treated observations
in the treatment group in period 1 is by definition equal to 0. Consequently, the second identification
region I derive will be narrow provided the share of treated observations did not change too much

between period 0 and 1 in the control group.

The main limitation of DID and fuzzy DID is that they identify only the average effect of the
treatment within specific populations whereas one might be interested in other parameters, such as
quantile treatment effects. In the DID literature, two approaches already exist to estimate quantile
treatment effects. The most common approach is the quantile-DID, in which the transformation used
to reconstruct the counterfactual distribution of the outcome is to add the change over time at the gth
quantile in the control group to the gth quantile of the first-period treatment group (see Meyer et al.
[1995] and Poterba et al. [1995]). This amounts to matching treatment and control observations in
period 0 on their quantile, and period 0 and period 1 observations in the control group on their quantile
as well. Athey and Imbens [2002] show that the model rationalizing this transformation has several
unattractive features: it assumes that time and group effects are additively separable, its assumptions
are not robust to a monotonous transform of Y and it places restrictions on the data. Therefore, Athey

and Imbens [2006] suggested another transformation to reconstruct the counterfactual distribution of



the outcome. It amounts to matching period 0 treatment and control observations on their value of Y,
and period 0 and period 1 control observations on their quantile. They show that this transformation
can be rationalized by a model, the Change in Change (CIC) which has several important advantages
with respect to the quantile-DID model: it does not rely on additive separability in time and group,
its assumptions are robust to a monotonous transform of Y and it does not place restrictions on the

data.

In fuzzy applications, that is to say in situations where the treatment rate increases more in one
group but where there are never and / or always takers, there is not yet a well-established procedure to
study quantile treatment effects. A first solution could be quantile IV regressions in which treatment
is instrumented by a time and group interaction. However, we still lack a clear consensus on how to do
quantile IV-regressions (see Abadie et al. [2002] and Chernozukhov and Hansen [2005]). Moreover, to
the best of my knowledge no paper considered whether the existing quantile IV regressions are adapted
to fuzzy DID. An extension of the CIC model to situations of imperfect compliance could provide a

second solution. The second contribution of this paper is to develop such an extension.

Fuzzy CIC results are strikingly close to fuzzy DID results. Indeed, my first fuzzy CIC result is
a non identification result: when compliance is imperfect, the mechanics of the CIC model collapse.
To understand why, one needs first to understand how the CIC model works. Think of Y as wages,
and of treatment as whether an individual completed highschool. Potential wages with and without
completing highschool are denoted Y (1) and Y'(0). The perfect compliance assumption states that all
observations in the test group x period 1 cell completed highschool and no observations in the three
remaining cells completed it. We seek to reconstruct the counterfactual distribution of wages without
completing highschool in the period 1 x test group cell. On that purpose, period 0 observations with
same wages in the test and in the control group are matched. To rationalize this matching, it is
assumed that Y (0) is a function of time and of an unobserved heterogeneity index U. Since those
observations did not complete highschool, are observed at the same period and have the same wages,
they must have the same U. Then period 0 and period 1 observations in the control group are matched
on their quantile in the distribution of wages. It is indeed assumed that groups are stable over time

so that the distribution of U is time invariant within group: since those observations belong to the



same group and have same rank they must have the same U. Finally, combining those two matching,
period 0 observations in the treatment group are matched to period 1 observations in the control group
with same U. Wages of the latter observations are counterfactual wages that the former would have

obtained in period 1 if they had not completed highschool.

But when compliance is imperfect, this double matching collapses. Two control and test group
observations with same wages in period 0 might no longer have the same U, because one might
have completed highschool whereas the other might not. Despite the fact they have same wages, the
observation which did not complete highschool probably has greater unobserved ability, which enabled
it to compensate for its lower education. Similarly, two control group observations with same rank in
period 0 and 1 might not have the same U. Assume that more observations completed highschool in
period 1. Then, the period 1 observation probably has greater unobserved ability: it has the same

rank despite the fact that more people have completed highschool in its cell.

Despite this general non identification result, there is one special case of imperfect compliance to
which the CIC model readily extends, exactly as with fuzzy DID. When there are no always takers,
the counterfactual distribution of wages without completing highschool in the period 1 X treatment
group cell is identified under the exact same assumptions as in Athey and Imbens [2006]. This is
because in this special case no observations are treated in period 0, so that period 0 treatment and
control observations can be matched on their wages as in the standard CIC model. Moreover, since
by assumption no observations are treated in period 0 and 1 in the control group, control observations
in the two periods can be matched based on their quantile: their ranking cannot have been disrupted
by a change in treatment rate. Therefore, the double matching process works. One just needs to
account for the fact that not all observations in the period 1 Xx treatment group cell are treated
when computing quantile treatment effects. Moreover, 1 also show that even when there are always
takers, CIC assumptions are still sufficient to place bounds on the distribution of Y'(0) among treated
observations of the period 1 X treatment group cell so that quantile treatment effects are partially
identified. The resulting bounds will be tight when the shares of treated observations within the three

remaining cells are small as what happens with fuzzy DID.

When there are large shares of always takers, quantile treatment effects can still be identified



through a strengthening of Athey and Imbens’s assumptions. It requires introducing an instrument
for treatment which should be in a one to one relationship with the time and group interaction term.
This could for instance be a policy which gives supplementary incentives to complete highschool such
as a new benefit, which was released in period 1 and is available only to test group individuals.
It also requires assuming that treated (resp. untreated) observations in the control group have the
same distribution of U in period 0 and 1. For this last assumption to be credible, the share of treated
observations should be stable between period 0 and 1 in the control group. Under those supplementary
assumptions, distributions of Y'(1) and Y (0) among compliers of the period 1 x treatment group cell are
identified, as well as various parameters of interest such as a Local Average Treatment Effect (LATE)
and quantile treatment effects within this population. This result will prove particularly useful in
applications considering extensions of a program to a new group previously not eligible and using a

previously eligible group as a control.

This result can be seen as a combination of ideas in Abadie [2003] and in Athey and Imbens
[2006]. To recover the distribution of Y (1) among compliers of the period 1 x treatment group cell, I
consider the distribution of wages among all treated observations in this cell. Since those observations
include both compliers and always takers, I need to “withdraw” from it the distribution of wages
among always takers. This is the same idea as in the “weighting” scheme suggested by Abadie to
recover statistical characteristics of compliers (see Abadie [2003], and Frolich and Melly [2008] for an
application to unconditional quantiles). But Abadie and Frélich and Melly have in mind applications
to randomized experiments, where the distribution of wages among always takers can be recovered from
the distribution of wages among treated observations in the control group due to random assignment.
Here, groups are not random. Therefore, I use distributions of wages among always takers in the
three remaining cells to reconstruct the distribution of Y (1) among always takers of the period 1 x
treatment group cell through the same double-matching process as in Athey and Imbens. Those three
distributions are observed since by definition observations which completed highschool in the three
remaining cells must be always takers. Period 0 always takers in the treatment and in the control
group are matched on their wages. Since they have the same treatment status, are observed at the

same period and have the same wage, they must have the same U. Then, period 0 and 1 always



takers in the control group are matched on their quantile. This will yield couples of observations with
same U since the distribution of U among always takers in the control group is the same in period
0 and 1, hence the need to assume that the share of treated observations is stable across periods in
the control group. Finally, the period 0 x treatment group always takers is matched to his period 1
X control group counterpart. To recover the distribution of Y (0) among compliers of the period 1 X
treatment group cell, I also proceed in two steps. First, I reconstruct the distribution of Y (0) among
compliers and never takers of this cell from distributions of Y (0) among untreated observations in the
three remaining cells. Then, I “withdraw” from this reconstructed distribution the distribution of Y (0)

among never takers (i.e. untreated observations) of the period 1 X treatment group cell.

Finally, I show that in applications where the share of treated observations also increases in the
control group, partial identification of the distributions of Y(1) and Y (0) among compliers of the period
1 x treatment group cell is obtained through a strengthening of IV-CIC assumptions. This result will

yield tight bounds in applications where the change in the treatment rate in the control group is small.

Therefore, the second contribution of this paper is to derive identification results inspired from the
CIC model which allow computing or bounding quantile treatment effects in fuzzy applications. In
applications with never takers but no always takers, and in applications with potentially large shares
of always takers but where the share of treated observations remained stable between period 0 and 1
in the control group, exact identification is obtained. In applications with few always takers or where
the share of treated observations does not increase much in the control group, tight bounds on quantile

treatment effects are obtained.

The remainder of the paper is divided into two parts. The first part deals with fuzzy DID. Section 1
is devoted to fuzzy DID identification results. Section 2 considers inference. Section 3 is devoted to the
application. Then, the second part deals with fuzzy CIC. Section 4 presents fuzzy CIC identification

results. The last section concludes.
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Part 1

Fuzzy Difference in Differences

1 Identification

I place myself in the pooled cross-section case: each individual is observed only at one period. Let
T € {to;t1} denote time and G € {g.; g:} denote treatment (g;) and control (g.) groups. I assume
that treatment status is binary and is denoted by an indicator D (results can easily be extended when

treatment is discrete).

Throughout the paper it is implicitly assumed that the stable unit treatment value assumption holds.
Under this assumption I define Y (1) and Y (0) as the potential outcomes of an individual with and
without the treatment. Only the actual outcome Y = Y (1) x D 4+ Y (0) x (1 — D) is observed. The
treatment effect is Y (1) — Y (0). Average treatment effects are the corresponding expectations. X ~ Y
means that X and Y have the same probability distribution. X is the support of X. To alleviate the

notational burden, I introduce several shorthands following Athey and Imbens [2006]:
Yij(k) ~ Y (k) [t =1, g = j V(k,i,5) € {0;1} x {to; 02} < {ge; 9}

Yij ~Y[t=1i,9=7V(ij) € {to;t1} x {gc; g}

Dij~ Dt =i, g=7Y(i,35) € {to;tr} X {ge; 9t}

Under those notations, the standard DID parameter is:
DID = E(Y;fl,gt) - E(Y;‘/o,gt) - [E(ifthgt) - E(Y;fo,gc)] .

I denote by DIDY the DID on treatment rate from period 0 to 1 across the two groups. I assume
that DIDY # 0: the definition of a fuzzy DID is that exposure to treatment should have evolved
differentially in the two groups. Without loss of generality, I assume that DID* > 0. The no always
takers special case is met when P(Dy, g, = 1) = P(Dy, 9. = 1) = P(Dyy 9. = 1) = 0. It is likely

to arise for instance when a new social program is implemented with only a specific group eligible
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to it (unemployed...) and take-up is below 100%. ATT;; = E(Y;;(1) — Y;;(0)|D = 1), V(i,j) €
{to;t1} % {gc; g¢} is the average treatment effect on treated individuals of group j in period i. ATT =
E(Y(1) —Y(0)|D = 1) is the average treatment effect on the treated. I denote Pap = P(Dy, 4, =

1) + P(Dyy 9. = 1) + P(Dyy 9. = 1) the sum of the three shares of always takers.

I take a common trend assumption which is at the basis of the DID approach (see for instance

Abadie [2005]):

Assumption DID 1: Common trend for the outcome variable

E(Yt1,6:(0)) — E(Yt,0.(0)) = E(Y2,,4.(0)) = E(Vig,4.(0))-

Lemma DID 1: Non-identification.

Under Assumption DID 1, none of the ATT; ; is identified and

DID = ATTthgt X ]P)(Dthgt - 1) - ATTtmgt X P(Dtmgt - 1)

_ATTthgc X ]P)(‘Dtlvgc = 1) + ATTto,gc X ]P)(Dtmgc. = 1)' (1)

According to Lemma DID 1, under Assumption DID 1, if compliance is imperfect, the DID on
Y can be written as a weighted DID of four average treatment effects on four different populations.
This is the equation with several unknowns mentioned in the introduction. Because two ATT enter
the equation with positive sign and two enter with negative sign, the DID cannot be given any causal
interpretation. It might for instance be positive whereas the four ATT are negative. The intuition
for this result is that under common trend on Y'(0), if no observations had been treated in any of the
four time x group cells, trends would have been parallel in the two groups and the DID would have
merely been equal to 0. In a standard DID, the only reason why trends might diverge across groups is
that observations in the treatment group get treated in period 1, so that the DID measures the effect
of the treatment on them. In a fuzzy DID, since there might be treated observations in several time
x group cells, diverging trends can potentially arise from the effect of the treatment in each of those

cells. Then, if no restrictions are placed on how heterogeneous the treatment effect can be across these
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four subgroups, it is not possible to identify any of the ATT;; from a standard DID computation,

since it yields one equation with several unknowns.

Proposition DID 1: Point identification.

i) In the no always takers special case, Assumption DID 1 is sufficient for ATy, 4, to be identified and

DID

ATT, =
g P(Dthgt = 1)

it) Under Assumption DID 1 and the supplementary assumption thatV(i,j) € {to;t1}x{gc;g9:}, ATT; ; =
ATT, the ATT; ; and the ATT are identified:

DID

V(i,j) € {tost1} x {ge; 9}, ATT; j = ATT = DIDP

In the no always takers special case, common trend is sufficient to identify ATT}, 4, as in a standard
DID because there are treated observations in one group only. Therefore, there is only one unknown
left in (1). This result is strikingly similar to Battistin and Rettore’s [2008] result on regression
discontinuity (RDD). They indeed show that in a fuzzy RDD, when treatment rate is equal to 0 below
the eligibility threshold, so that fuzziness arises only because of never takers (i.e. untreated individuals
above the threshold), identification is obtained under the same assumptions than in a sharp RDD.
Estimation of ATT}, 4, still requires being able to estimate P(Dy, 4, = 1). Sometimes treatment status
is not observed, making it impossible to estimate P(Dy, 4, = 1) (see e.g. Eissa and Leibman [1996]).
Since ATT}, 4, and DID have the same sign and |DID| < |ATTy, 4,1, it is at least possible to estimate
a lower bound of ATT;, 4, by computing the DID. For instance, Eissa and Leibman’s 1.4 percentage
points DID is a lower bound on the true effect of the EITC extension on lone mothers’ participation

to the labor market.

Then in part ii) of Proposition DID 1, I show that it is enough to restrict the heterogeneity of
the treatment effect, assuming that it does not vary across time and group, to identify exactly the
ATT. This is because under this assumption the four unknowns in (1) are actually equal to each other.
But this is fairly restrictive an assumption. The underlying assumption to a fuzzy DID is indeed that

treatment rate increased more from period 0 to 1 in the treatment group than in the control group.

13



This might for instance be the case because treatment group individuals were more incentivized to
receive the treatment in period 1 than in period 0. Inside the treatment group, treated individuals
during period 1 are therefore likely to differ from those treated during period 0 so that the average

treatment effect could arguably be different in these two groups.

Before stating Proposition DID 2, T define three quantities:

B _ DID+(E(Ysg,g,| D=1)=u) xP(Dty g, =1)+(E(Yzy g | D=1)—1) xP(Dy g,=1)—(E(Yzg,g.| D=1)—v) XP(Dsy,6.=1)
(u,v) = P(Dz, 4, =1) ’
1,9t
Bl — DID+(E(Yyg,g,| D=1)—M ) xP(Dsty g, =1)+(maz(E(Ys; 4| D=1);E(Ysy,g.| D=1)) =M )X (P(Dy; 4. =1)—P(Dsy,4.=1))
- ]P}(Dtpgt:l)
and

2 _ DID+(E(Yyg,g,| D=1)—m) xP(Dyq, g, =1)+ (min(E(Ys g.| D=1);E(Yeg,g.| D=1))—m) x (P(Dst; ,3.=1)—P(Dsy 4. =1))

B P(D¢y,9,=1)

Proposition DID 2: Partial Identification.

i) Under Assumption DID 1 and the supplementary assumption that I(m, M) € R?/P(m < Y(0) <

B < ATT,, 4 < By.

B_ =maz (BY(M,m) ; E(Y, 4| D =1) — M) and By = min (B°(m, M) ; E(Y, q,| D =1) —m),
B_ and By are sharp.

Par < P(Dy, 4, = 1) is a sufficient condition to have that either B_ = BY(M,m) or By = B%(m, M).
ii) Under Assumption DID 1 and the supplementary assumptions that 3(m, M) € R?/P(m <Y (0) <
M) =1 and that ATTy, 4. = ATTy 4.,

B_ < ATTy, 4 < B,

I

B_ =mazx (min(B'; B?); E(Y;,q,|D =1)— M) and
B, = min (maz(B'; B?); E(Y;, 4| D =1) —m).
B and B; are sharp.
P(Diyge = 1) + |P(Dty 9. = 1) =P(Dyy,g. = 1)| < P(Dy, g, = 1) is a sufficient condition to have that
either B_ = min(B' ; B?) or B, = max(B'; B?).

If Y'(0) is bounded, it is possible to find bounds for ATTj, 4, which can be non-parametrically

estimated from the sample in the spirit of Manski [1990]. This comes from the fact that the only three
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quantities appearing in (1) which are not observed and do not belong to ATT}, 4, are E(Y, 4,(0)] D = 1),
E(Y:,,4.(0)] D = 1) and E(Y},,4.(0)| D = 1). Therefore, it suffices to build up worst-case scenarii for
each of them to derive bounds for ATT;, 4,,. But those worst case scenarii might not be compatible
with the common trend assumption and might therefore yield values lower (resp. higher) than the
lowest (resp. highest) possible value for ATT}, 4, compatible with the data, i.e. E(Y;, 4,|D =1) — M
(resp. E(Y}, 4|D = 1) —m). Hence the need to ensure that B > E(Y;, 4|D = 1) — M and
By <EY; 0| D=1)—m. If BL =E(Y; 4|D =1)—M and By = E(Y;, 4,| D = 1) —m, the bounds
are uninformative. If P47 < P(Dy, 4, = 1), that is to say if the share of treated observations in the
period 1 X treatment group cell is greater than the shares of always takers, at least one of the bounds
is informative. Conversely, when Par > P(Dy, 4, = 1), at least one of the bounds in uninformative.
There is no sufficient condition on P47 which ensures that the two bounds are informative (except
P47 = 0), because even when Pyp is very small, it is still possible to build up a DGP such that
one of the bounds is uninformative, for instance setting E(Y}, 4,(0)| D = 1) = M. Apart from such
extreme cases, if Par < P(Dy, 4, = 1), it is likely that the two bounds will be informative. This
condition appears because P4p is the “size” of the three subgroups for which Y (0) is not observed,
which enter into (1), and for which worst case scenarii must be constructed. P(Dy, 4, = 1) is the size of
the only subgroup for which Y (0) is not observed, which enters the common trend equation and does
not enter into (1), that is to say the size of the only degree of freedom left to verify common trend
once worst case scenarii have been constructed for the three groups of always takers. When the two
bounds are informative, the length of [B_; By] is equal to (M —m) x %. It is increasing with
Par, and decreasing with P(Dy, 4, = 1). However, whether 0 belongs to [B_; B;] does not depend
on P(Dy, 4, = 1) but on the size of DID with respect to M —m, , P(Dyy 4, = 1), P(Dy, 4. = 1), and
P(Dyy . = 1).

In part ii) of Proposition DID 2 T show that narrower bounds for ATT;, 4, can be derived under
the supplementary assumption that the ATT is constant over time in the control group.? Such an
assumption might be credible for instance when the treatment rate does not significantly change

between period 0 and 1 in the control group, when observable characteristics of treated individuals

31 am very grateful to Roland Rathelot for suggesting this result.
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in the control group do not change much over the two periods, or when E(Y;, 4.| D = 1) is close
from E(Y}, 4.| D = 1). Under this hypothesis, (1) becomes an equation with only three unknowns,
and worst case analysis must be conducted on only two expectations. Those worst case scenarii
might also not be compatible with common trend and may therefore yield lower and upper bounds
outside the range of values of ATT}, 4 compatible with the data, hence the need to ensure that
B_. >E(Yy 4| D =1)— M and B, <E(Y;, 4| D = 1) —m for the bounds to be sharp. If P(Dy, , =
1) +|P(Dyy 9. =1) = P(Dyy 9. = 1)| < P(Dy, 4, = 1), at least one of the two bounds will be informative.
The sign of ATT;, 4, will be identified if both P(Dy, 4, = 1) and [P(Dy, 4. = 1) —P(Dy, 4. = 1)| are
small. With respect to part i) of the Proposition, P(Dy, 4. = 1) + P(Dy, 4. = 1) has been replaced by
|P(Dy, 9. = 1) = P(Dyy 9. = 1)|: what matter are no longer the shares of treated observations in the
control group but the change in this share from period 0 to 1. This is somewhat similar to the change in
the size of the identification region when Lee bounds (see Lee [2009] and Horowitz and Manski [1995])
are used to deal with attrition instead of Manski bounds. This result is of particular interest to place
narrow bounds on the ATT in applications considering the extension of policy to a group which was
previously not eligible to it and which use a group previously eligible as the control group. Indeed, in
such cases, P(Dy,,4, = 1) = 0. Consequently, if the change in the treatment rate from period 0 to 1 in
the control group is not too large, [B/,; B;} will be narrow. Point identification can even be obtained

lf II'JD(‘Dtlygc = 1) = ]P)(Dtmgc = 1)

2 Inference

The objective of this section is to build up confidence intervals (CI) for ATT}, 4, based upon the

identification results of section 2. I denote LBY and UB? the lower and upper bounds of the CI of a
DID DID

parameter § with % asymptotic coverage. A first candidate is CI' = LB(’TZ’S ; UB(El”fa’)) . In the no
always takers special case, common trend is enough for CI' to be a consistent CI for ATT;, ,,, since
ATTy, 4, = %. But when there are always takers, CI' is a CI for ATTy, 4, (i.e. ATTy, 4, = %)
only under the very strong assumption that ATT do not vary across time x group cells. In such cases,
partial identification results might allow deriving CI for ATT}, 4, under weaker assumptions. This is

the purpose of Proposition DID 3.
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Proposition DID 3: CI for AT}, 4based on partial identification results

i) Under Assumption DID 1 and the supplementary assumption that 3(m, M) € R?/P(m < Y (0) <

and CI3 = |LBP- .UB®

(1-20) (1+_2a) are CI for ATTy, g4, with

— 2 _ B | By
M) =1, CI* = LB(I_Q),UB(I_Q)

asymptotic coverage of (1 — a)%.
i) Under Assumption DID 1 and the supplementary assumptions that I(m, M) € R?2/P(m < Y (0) <
M) =1 and that ATTy, 4. = AT Ty, g, if €ither P(Dy, g. = 1) —P(Dyy 9. = 1) # 0 or P(Dy, g, = 1) # 0,

then

/

B ) B
(1-a) UBu

/ !

B_ ;UBB

CI* = |LB *_a} and CI° = |:LB(1—20¢) (1t2a) are CI for ATTy, 4, with asymptotic

)
coverage of (1 —a)%.

Based on the first partial identification result in Proposition DID 2, one can build a CI for
ATT;, 4, with (1 — «)% asymptotic coverage using the lower bound of the (1 — «)% CI of B_ and the
upper bound of the (1 — )% CI of By. This yields CI?. As shown in Imbens and Manski [2004],
using (1 — 2a)% lower and upper bounds will also yield a CI for ATT}, 4, with (1 — )% asymptotic
coverage. This is CI3. However, it suffers from uniform convergence issues: when we get close to
point identification (P4r — 0), CI? will be narrower than CI' despite the fact that it is based on a
partial identification result whereas CI' relies on point identification and stronger assumptions. To
circumvent this issue, Imbens and Manski introduce a third CI lying in-between the (1 — «)% and the
(1 —2a)% CI. It accounts for the fact that because the parameter is partially identified, the (1 — @)%
CI is too conservative and also avoids the above mentioned uniform convergence issue. Stoye [2009]
shows that this third CI relies on a superefficiency condition which is verified when by construction
B < é; and when

—

B_—-B_ d
Vil 4 N (0,2)
B, — By
uniformly in P. While the former is true here, the latter is not as shown in Proposition DID 4.

Therefore, this third CI cannot be used here.

Finally, based on the second identification result in Proposition DID 2 which relies on stronger
identifying assumptions, one can use B_ and B; instead of B_ and B, to build up CI for ATT;}, g4,.
Using the lower bound of the (1 —a)% CI of B_ and the upper bound of the (1 —a)% CI of B, yields
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CI*. Using the corresponding (1 — 2a)% bounds yields CI°.

Proposition DID 3 shows how to build up CI for ATT}, 4, based upon CI for B_, By, B and
B;. I show now how to construct such CI for B_ and B.. Let (Y;, D;, T;, G;)1<i<p be an iid sample
of size n drawn from the distribution of (Y, D, T, G). I assume that P(T =i, G = j) > 0 V(i, j) €
{to;t1} x {ge; ¢} and that Y is bounded, meaning that 3(m, M) € R?/P(m < Y (0) < M) = 1, where
m and M are known by the econometrician. Empirical counterparts are used to estimate B_ and
B, . I consider the asymptotic behavior of B_ and éjr On that purpose, I define a variance matrix

2

oy P
¥ = ! whose explicit expression is given in Appendix B and which can be consistently

p o3
estimated by 5.
Proposition DID 4: \/n-consistency of B_ and é:r

IfBO(Mam) > E(Y;fl,gt‘D = 1) - M7

If BO(M,m) =E(Y}, 4| D=1)— M,

/

where S = maz (N*; N?) with < N N2 > ~N(0,%).

If BO(M,m) <E(Yy 4|D=1)— M,

—

NG <B_ . B_) 4 N (0,02).

Stmilarly one can show that é:L is \/n-consistent with three possible limiting distributions depending

on the respective positions of BY(m, M) and E(Y, 4| D = 1) —m.

B_ is not differentiable at BY(M,m) = E(Y, 4| D = 1) — M and B' is not differentiable at
BY(m, M) = E(Y, 5| D = 1) — m. Therefore, v/n (é\_ — B_) and /n (éjr — B+) do not converge
to a normal distribution uniformly in P. If B(M,m) > E(Yy, 0D = 1) — M, vn (é: — B,)
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converges to a normal distribution. If BO(M,m) < E(Y;, 4| D = 1) — M, it converges to another

normal distribution. If BO(M,m) = E(Y;, 4,| D = 1) — M, its limiting distribution is non standard.

In all cases, it is possible to build CI for B_ and B;. Let us consider B_ (the reasoning

follows the same steps for By). If BO(M,m) > E(Y;, ,|D = 1) — M, a CI for B_ is CI* =

2
q177 o7

\/ﬁ

2
91— g *01

RO
NG ; BO(M,m) +

BO(/]\/ITm) —

, where q-g is the 1 — “th quantile of a N(0,1) dis-

Q

tribution. If BO(M,m) = E(Y, 4| D =1)— M, a CI for B_ is CI® = [B + f’ B +° 2] where

q~% and q~1,% are the %th and 1— %th quantiles of S! = maz (Nl; N2) with ( Nl N2 )
Finally, if BY(M,m) < E(Y, 5| D =1) — M, a CI for B_

o2 o2
G1—g X053 3 ‘11—‘2”“’2]

CI¢ = E(Y;f17gt|D:1)_M_ vn E(Yil,gt’Dzl)_M"’_ vn

But B%(M,m) and E(Y;, 4,| D = 1) — M are unknown, hence the need to find CI with (1 — a)%

asymptotic coverage irrespective of their respective position. This is achieved by choosing CT4 when

BWm) is more than % above IE(YH,QJ D =1)— M, CI” when BO(M m) is less than lT\L/@ away

from B(Vy, 4| D = 1) — M, and CIC when BO(M, m) i "ﬁ) below E(Yy, 4| D = 1) — M4,

The reason why this decision rule yields a CI with (1—a)% asymptotic coverage uniformly in B®(M,m)

and E(Yy, 4,| D = 1) — M is that since ﬁ =0 (hj}ﬁ)> the probability to pick the “wrong” CI converges

to 0.

Proposition DID 5: CI for B_ and éjr with uniform asymptotic coverage

—C7A ST
CI=CI" x 1{]@(n1,gt|D:1)—M+%<B°(MM)}

B
+CI7 x 14 nn) o —— i
{IE(Ytl,gt|D:l)fo—l\/(H)SBO(M,m)gIE(YtLgAD:l)fMJr—l\/(ﬁ)}

o
+ol Xl{BO(Mm) + 1) <B(Yey g, | D=1)—M |

is a CI for B_ with (1 — )% asymptotic coverage uniformly in B®(M,m) and E(Ys, 4| D = 1) — M.
A CI for By with (1 — a)% asymptotic coverage uniformly in B®(m, M) and E(Yy, 4| D = 1) —m can

be constructed following the same steps.

Un _ 0

*Instead of In(n), one can choose whatever sequence u,, such that u, — 400 and
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Let us now consider B and B:r. As in Proposition DID 4, one can show that whatever the value of
B(Diyg, = 1) = P(Digg, = 1), E(Vi .| D = 1) ~E(Yiy .| D = 1), min(B' ; B2)—E(Y;, g, D = 1)= M
and max(B! ; B%) —E(Y4, 4|D = 1) —m, é\l_ and éi are \/n-consistent, with standard normal
limiting distributions when those four quantities are different from 0, and with non standard limiting
distributions when one of them quantities is equal to 0. It is also possible to derive CI for B_ and By
with (1—a)% asymptotic coverage irrespective of the value of those four unknown quantities. Because
both B’ and B!, are not differentiable at 3 points, careful analysis of their limiting distribution requires
distinguishing 27 cases. Similarly, the construction of uniform CI for B_ and B; involves 27 auxiliary

CI. Due to a concern for brevity, the two corresponding propositions are not presented here.

3 Application to the impact of varenicline on smoking cessation.

3.1 Data and methods

I use the data base of French smoking cessation clinics participating in the “Consultation Dépen-
dance Tabagique” program (hereafter referred to as CDT). This program started in 2001 and led to
the progressive implementation of smoking cessation services nationwide. During patients’ first visit,
smoking status is evaluated according to daily cigarettes smoked and a measure of expired carbon
monoxide (CO) which is a biomarker for recent tobacco use. At the end of this first visit, treatments
may be prescribed to patients (nicotine replacement therapies. .. ). Follow-up visits are offered during

which CO measures are usually made to validate tobacco abstinence.

Varenicline is a pharmacotherapy for smoking cessation support which was made available to
these centers in February 2007. 59 services recorded at least one patient per year in 2006 and 2007
and followed at least 50% of their patients. The kernel density estimate of the rate of prescription
of varenicline per center is shown in Figure 1. It is bimodal, with a first peak at very low rates of
prescription, and a second smaller peak around 35-40%. In 15 services, less than 3% of all patients
consulted have been prescribed varenicline during the year following its release. In 13 services, more
than 20% of patients were prescribed varenicline. I exploit this to estimate the impact of varenicline

on smoking cessation through a fuzzy DID identification strategy. The control group is made up
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of patients registered by the 15 “below 3% prescription rate” services, whereas the treatment group
consists of patients recorded by “above 20% prescription rate” centers. Period 0 goes from February

2006 to January 2007, and period 1 from February 2007 to January 2008.

[Figure 1 inserted here]

8 581 patients consulted those 28 services over period 0 and 1. Because many patients never
came back for follow-up visits, there are only 5 299 patients (62% of the initial sample) for whom
follow-up CO measures are available. I exclude patients for whom no such measures are available from
the analysis. Among remaining patients, which I refer to as the included sample, I compute a point
prevalence abstinence rate, that is to say the share of patients whose last follow-up CO determination

was inferior or equal to 5 parts per million (ppm).

3.2 Results

In Table 1, I provide descriptive statistics on patients per group of centers and per period of time.
Patients consulted in those cessation services are middle-aged, rather educated and the majority of
them are employed. They are very heavy smokers since they smoke more than 21.6 cigarettes per day
on average, which corresponds to the 90th percentile in the French distribution of smokers (Beck et
al. [2007]). 17% of them suffer from chronic obstructive pulmonary diseases (COPD) and more than
30% suffer from tobacco related diseases (lung cancer, COPD...). They have therefore been classified

as “hardcore” addicts in the medical literature.

[Table 1 inserted here]

In period 0, the prescription rate of varenicline was equal to 0% in control centers and to 0.01%
in treatment centers (varenicline was prescribed to 6 patients recorded in the last week of January
2007, that is to say right before the release of varenicline). In period 1, it was equal to 1.6% in control
centers and to 38.2% in treatment centers. This sharp rise in varenicline prescription in treatment
centers entailed a strong decrease in the prescription of other treatments such as nicotine patch.

Finally, from period 0 to 1, the point prevalence abstinence rate increased (from 53.7% to 56.9%) in
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treatment centers, whereas it decreased (from 46.6% to 41.6%) in control centers. Among treatment
patients prescribed varenicline in period 0, abstinence rate was equal to 50.0%. Among control patients
prescribed varenicline in period 1, abstinence rate was equal to 58.3%. Applying the formulas of

section 2, I compute that B_ = 19.1% (P-value — 0.008) and B = 24.5% (P-value = 0.001). Finally,

DID — 92 7% (P-value=0.003).
DIDP
A N s - = l YA I .
BO(M,m) is higher than E(Y;, 4|D = 1) — 1 — T\L/(%), and BO(m, M) + T}%) is lower than
I@T(Y}l,gt| D = 1). Consequently, the CI to be used for B_ and B, are CI4 (see Proposition DID

DID DID

5). Then, using Proposition DID 3, I construct 3 CI for ATT;, 4 CI' = [LBQ%’DP;UBQ%IDP =

[7.8%; 37.5%)], CI? = [LBJQ-;UB;? — [5.0% : 38.6%], CI® = [LB;%-;UBS%} — [7.3% : 36.3%]. The
uniform convergence issue mentioned in Imbens and Manski [2004] shows up here since CI? is shorter

than CI'. But here even CI? is enough to infer the sign of ATT}, 4,.

Point identification of ATT}, 4, relies on a strong constant treatment effect assumption whereas
identification of [B_; By]| is obtained under much weaker assumptions. Moreover, inference on B_
is sufficient to draw inference on the sign of ATT}, 4. Finally, even using C1 2 inference on B_ and

é:r yields a 95% CI for AT}, 4, which is only slightly broader than the one obtained when drawing

o —

inference on %. Therefore, one might consider that here, the parameters which achieve the best

trade-off between the accuracy of the information they deliver and the identifying assumptions on

o —

which they rely are B_ and é; and not 2L
DIDF

3.3 Robustness checks

The only substantial assumption which is needed to identify [B_; By] is the common trend
assumption. To “test” it, I use the fact that I have several years of data available and I compute placebo
DID from 2003 to 2008. They are displayed in the top panel of Table 2 along with their P-values.
Only the 2006-2007 DID is significant, which gives some credit to the common trend assumption. I
also compute 2006-2007 placebo DID on 9 patients’ observable characteristics. They are also displayed
in Table 2. This test is less conclusive since 2 DID out of 9 are significantly different from 0 at the
95% level. For instance, daily cigarettes smoked increased by 1.45 more among treatment centers’ than

among control centers’ patients from 2006 to 2007. Similarly, the percentage of patients suffering from
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COPD increased by 4.4 percentage points more in treatment than in control services. This might cast
some doubt on the validity of the common trend assumption. However, the P-value obtained on the
DID of percentage of successful quits from 2006 to 2007 is still the lowest by far out of the 14 DID
computed in Table 2. Moreover, high number of daily cigarettes smoked and COPD are predictors of
unsuccessful quits. Since my fuzzy DID identification strategy does not correct for diverging trends on

those variables, it might underestimate the true effect of varenicline.

Attrition seems orthogonal to the interaction of period 1 and treatment centers, since the DID
computed on the percentage of patients included is low and insignificant (+2.2%, P-value = 0.30).
Therefore, estimates do not seem contaminated by attrition bias. However, the delay between patients’
first visit and the last CO measure available increased more in treatment than in control clinics. This
is very likely to be because varenicline being a newly released drug with more severe secondary effects
than nicotine patch, doctors put more effort in following their patients over a longer period of time
to ensure they tolerate it well. Anyway, since smoking cessation is known to be a “duration” type
of process, observing patients over a longer period of time in period 1 than in period 0 in treatment

clinics can only bias downward my estimate.

Finally, one might worry about the arbitrariness of the definition of my treatment and control
groups which is not based on some objective characteristic of cessation services. I investigate the
sensitivity of the results to the 3%-20% rule as a robustness check. I ran the same analysis with 9
different pairs of thresholds and always got B_ > 0 with 6 P-values lower than 0.05. The results of

this last robustness check are displayed in the bottom panel of Table 2.

[Table 2 inserted here]
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Part 11

Fuzzy Change in Change
4 Identification

4.1 Identification under CIC assumptions

I place myself in the pooled cross-section case: each individual is observed only at one period. Let
T € {to;t1} denote time and G € {g.; g:} denote treatment (g;) and control (g.) groups. I assume that
treatment status is binary and is denoted by an indicator D. Throughout the paper it is implicitly
assumed that the stable unit treatment value assumption holds. Under this assumption I define Y'(1)
and Y (0) as the potential outcomes of an individual with and without the treatment. Only the actual
outcome Y =Y (1) x D+ Y(0) x (1 — D) is observed. The treatment effect is Y (1) — Y (0). X ~Y
means that X and Y have the same probability distribution. X is the support of X. To alleviate the

notational burden, I introduce several shorthands following Athey and Imbens [2006]:
Yig(k) ~Y(k) [T =t, G =g V(t g,k) € {to;t1} x {ge; 9:} x {0;1}

Yig~Y [T =t,G=g V(tg) € {to;tr} x {ge; 91}

Dig~D|T =t,G=g ¥(t,9) € {to;t1} X {ge; 91}

Let Fx and Fyxy denote respectively the cumulative distribution function (cdf) of a random
variable X and the cdf of X conditional on Y. Let F);ldenote the inverse cdf of X. The standard
definition of Fi;'(q) is Vg € [0;1], Fx'(q) = inf {z € X/Fx(z) > q}.

Athey and Imbens take the following assumptions:
Assumption CIC 1: Model
Vk € {0;1}, Y (k) = hx(U,T) where U represents individuals unobserved characteristics.
Assumption CIC 2: Strict monotonicity
Vk € {0;1}, Vt € {to;t1}, hi(u,t) is strictly increasing in u.

Assumption CIC 3: Time invariance within groups
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ULT|G
Assumption CIC 4: Support
U|G = ¢ CU|G = g
Assumption CIC 5: Perfect compliance
D=1=TxG={t1;9:}

Under those assumptions, they prove the following result:
Theorem 3.1, Athey and Imbens [2006]:

i) Under Assumption CIC 1 to Assumption CIC 4, if U is either continuous or discrete, then

-1
Fy, )= fE@mggo)<1§@0ﬂcaD (fﬁqlgcan(y)))

Under Assumption CIC 1 to Assumption CIC 5, if U is either continuous or discrete,

) Fy, ,.0)(y) is identified:

—1
Fytlagt(o) (y) = FYthgt (Fyto,gc (FYil,gc (y))> ’

i) E (Y, 9, (1) — Y4, 4,(0)) s identified:

E (Vi (1) = Yiu0(0) = B (Vi) = E (P! (Frig (Vi) )

iv) Yq € [0;1], F;tll,gt(l)(Q) — F;tllﬂt(o) (q) is identified:

—1 —1 _ —1 —1 —1
By, @ = Fy o =F, (@)= F (FYo (Fm (‘1))) :

Under Assumption CIC 5, the cdf of Y (0) in the period 1 X test group cell is not observed
because all observations of this cell are treated. But Theorem 3.1 states that it can be recovered
from three observable functions (Fy; . (.), F;zs,gc (.) and Fy, , (.)), making it possible to compute the

average treatment effect as well as quantile treatment effects within this cell. The intuition of this
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theorem is as follows. Take an observation in the period 0 x control group cell. Denote y its observed
outcome, g the quantile corresponding to y in the distribution of this cell, and u its realization of U.
By Assumption CIC 1 and Assumption CIC 5, y = ho(u,tp). Now consider the observation at the
qth quantile of the distribution of Y in the period 1 x control group cell, and denote y* its observed
outcome. Since the distribution of U is time invariant within group (Assumption CIC 3), those two
observations must have the same u. Therefore, y* = ho(u,t;), which means that the gth quantile
of the period 1 x control group cell identifies the period 1 Y (0) of an observation with unobserved
heterogeneity u. Now consider an observation in the period 0 x test group cell with observed outcome
y. Since Y (0) only depends on time and unobserved heterogeneity (Assumption CIC 1) and since
ho(., o) is invertible (Assumption CIC 2), it must have the same unobserved heterogeneity u than the
period 0 x control group observation. Thus for an observation of the test group with observed outcome
y in period 0 and unobserved heterogeneity w, it is possible to recover its period 1 Y (0): it is merely
equal to y*. Therefore, to recover the whole counterfactual distribution of Y (0) in the period 1 X test
group cell, it suffices to translate the whole distribution of Y in the period 0 x test group cell from y

to the corresponding y* for each value of y.

Part i) of their Theorem does not rely on Assumption CIC 5 whereas part ii) does, hence my

non-identification Lemma:
Lemma CIC 1: Non-identification.

Under Assumption CIC 1 to Assumption CIC 4, if U is either continuous or discrete, Fy, 4,0 (y) is
. -1
not necessarily equal to Fy, . <FYt0,gc (FYtlﬁgc (y)))

Assumption CIC 1 to Assumption CIC 4 are sufficient for part i) of Athey and Imbens’s Theorem
to hold. It states that the cdf of Yy, 4,(0) can be recovered from the cdf of Yy 4,(0) and Y3, 4.(0) and
from the inverse cdf of Yy, 4.(0). However, when compliance is imperfect, this might prove useless
since those functions may not be fully observed: only Fﬁo,gt(0)|D=0’ FYtl,gc(O)\D:O and Fg;,gc(o)\D:O
are observed. This is because two steps in the intuition of Theorem 3.1 collapse. First, two control
and test group observations with same gy in period 0 might no longer have the same u, because one

might be untreated which means that y = ho(ug,t9), whereas the other is treated meaning that

y = hy(u1,to). ho(ug,to) = hi(ug,tg) does not imply ug = uj. Then, two observations at the gth
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quantile of the distribution of Y in the control group in period 0 and in period 1 do not necessarily
have the same u. Indeed, if the treatment rate changed between the two periods in the control group
this could disrupt the ranking of observations. Assume for instance that Y are wages, D is secondary
education completion. If the share of observations completing secondary education increased in the
control group, then a period 1 untreated observation with the same rank in the wage distribution as
a period 0 untreated observation has probably a higher rank in the unobserved ability distribution.
Indeed, despite the fact that more of its counterparts are educated and therefore have an advantage on
the labor market, it has the same rank in the wage distribution. Despite this general non identification
result [ now state an identification result. It holds in one important special case which is when there
are no always takers, that is to say when P(Dy, 4, = 1) = P(Dy, 4. = 1) = P(Dyy9. = 1) = 0.

Theorem CIC 1: Point identification in the no always takers special case

1 —
By 00 (FYto,gc (FYtLgC (y))> ~Fy;, g, 10=0(y) XB(Dty,g,=0)
P(Dty,9,=1)

Let G(y) = In the no always takers special case,

under Assumption CIC 1 to Assumption CIC 4:
i) Fy, ,,(0)\D=1 15 identified:

Fy, op=1y) =G(y)

i) E (Y:,,9,(1) — Yy, 4,(0)|D = 1) is identified:

E (Y;h,gt) - E <F121179C (FY}O,gC (Ytoygt)))
P(Dtlagt =1)

T =E (Y 0,(1) = Y20, (0)|D = 1) =

i) Vg € [0:1], Fy, - ipa(0) =y oy pey (0) s identified:

cic —1 -1 -1 .
0 =Y =10 T By p=1(0) = By ipa (@) = inf {y € Yo /Gly) = a}

Theorem CIC 1 holds because in the no always takers special case, Fy, , = Fyto%S 0+ Fyviy 4o =

-1

—1 .
FYH,QU(O) and FYtQ,Qc - }/t()»gc

0)° Consequently, all the functions required to recover the cdf of Y3, 4,(0)
from Athey and Imbeng’s Theorem 3.1 are fully observed. Indeed, in the previous lemma, the fact
that some period 0 observations could potentially be treated made it impossible to match treatment

and control observations on their Y. Moreover, a change in the treatment rate in the control group
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could have disrupted the ranking of control observations between the two periods. But since in the
no always takers case, no one gets treated in period 0 and in the two control cells, the CIC double
matching process is sufficient to reproduce Fy, (o) (y), the distribution of Y (0) within the period 1
x test group cell. Since Fy, _ (0)p=0(y) is observed, subtracting it to Fy, _(0)(y) allows recovering
Fy, ,,)|p=1(y). Consequently, since Fy, (1) p=1(y) is observed, it is possible to identify the average

treatment effect on the treated and quantile treatment effects.

Even though when there are always takers CIC assumptions are not sufficient for identification,
I show now that they are still sufficient to place bounds on Fy, _ (o) p—1(y) and therefore on 7¢1¢

and 7¢1¢

¢~ (due to a concern for brevity I give explicit formulas for bounds on Fy;  (0)p=1(y) only).

Those bounds will be tight in applications with small shares of observations treated within the three

remaining cells.
Proposition CIC 1: Partial Identification in the CIC model.

Under Assumption CIC 1 to Assumption CIC 4,

BYIC < Fy, ., @p=1(y) < B¢I©

with
Fy ‘Dzo(i’J)XP(Dtl gC:0>*P(DtOAgC:1)
—1 t1,9¢c ? ’ _ _
BCIC FYto,gtlDZO <FYto,ch_0< ] P(Dtg,9.=0) XP(Dig,g 70)_Fyt1,gt‘DZO(y)XP(Dtl’g" =0)
- P(D¢y,9,=1)
and
Fy ‘Dzo(y)XP(Dtl 9c=0)+P(D¢y g =1)
-1 t1,9 o o _ _ —
BCIC F¥y,901D=0 <FYto,ch0< ] P(Dtg,9.=0) XIP(Dtg,g, =0)+P(Dig,00=1)=Fyy, o, 1D=0(y)xP(Dry,9,=0)
+ P(Dty,g,=1)

The bounds are obtained as follows. Athey and Imbens’s Theorem 3.1 states that the cdf
of Y; 4,(0) can be recovered from the cdf of Yy 4 (0) and Y}, 4.(0), and from the inverse cdf of
Yi0,6.(0). When there are always takers, those three functions are not fully observed: only FYto.,gt(O)l D=0s
Fy, ,.(0)|p=0 and F;ti,gc (0)| D=0 AT€ observed. But the cdf of Y}, 4,(0), can be bounded placing bounds
on FYtO,gt(O)\Dzla FYtl,gc(O)lD:l and F;t;,gc(O)ID=1' The length of [BQIC;BEIC} is increasing with

P(Diyg. = 1), P(Dy, g, = 1), and P(Dyy 4, = 1). It is decreasing with P(Dy, 4, = 1). This is is very

similar to the result obtained with fuzzy DID.
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4.2 Identification in the IV Change in Change model

To deal with applications with potentially large share of always takers, I give a second identification
result. It requires that the share of treated observations remained approximately constant between
period 0 and 1 in the control group. Under this last assumption, one can indeed assume that unobserved
heterogeneity of treated and untreated observations in the control group did not change between
period 0 and 1 since within that group selection into treatment seems to have remained constant over
time. This result also requires assuming that within the test group, the share of treated observations
increased because of a policy change, or because of supplementary incentives for treatment given to
that group only. This amounts to introducing a binary instrument for treatment Z which is such
that Z = 1 < T x G = {t1;g:}. 1 also introduce the two corresponding potential treatment
statuses, D(0) and D(1), which stand for treatment without and with the policy. Observed treatment
is D=7ZxD(1)+ (1 —-2) x D(0).

I introduce a slightly more restrictive set of assumptions than Athey and Imbens’s. In particular,
I replace Assumption CIC 3 by
Assumption CIC 3’: Time invariance of U and D(0) within groups
(U, D(0)) L. T |G
Note that Assumption CIC 3’ is equivalent to D(0) 1L T'|G and U 1L T'| G, D(0). The first assump-
tion means that selection into treatment would have remained time invariant if no policy had been
implemented. It has one testable implication which is that within the control group, the share of
treated individuals should have remained constant between period 0 and 1. The second assumption
states that in the control group, treated observations should remain “the same” across time, meaning
that the distribution of their unobserved heterogeneity should not change. This will be all the more
credible that observable characteristics of treated observations do not change much over time in the
control group.

I also replace Assumption CIC 4 by Assumption CIC 4’

Assumption CIC 4’: Support

UG=g¢,D0)=1CU|G=g.,D(0)=1
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U|G = ¢, D(0) =0C U|G = g.,D(0) =0

Finally T introduce a monotonicity assumption:

Assumption CIC 6: Monotonicity

D(1) > D(0)

Assumption CIC 6 means that there should be no defiers, that is to say observations who get treated
without the policy and do not get treated with it.

Theorem CIC 2: Identification in the IV-CIC model

-1
FYtl,gt ‘DZl(y)XP(Dtlvgtzl)_FYto,gt |D=1 (Fyto,gc|D=1 (FYt1,9C|D:1(y)>> XP(DtO,thI)

1 —
Let H (y) = P(Dty,9,=1)—P(Dtg,9,=1)

1
FYtoygt |D=0 (FYto,gc |D=0 (FYtlng \D:o(?ﬂ)) XP(Dtg,g4 ZO)*FYt1 91 |D=0(y) XP(D¢y 4, =0)
IFD(Dto,gt :O)*P(Dfl ,9t =0)

and HO(y) =

Under Assumption CIC 1, Assumption CIC 2, Assumption CIC 3’, Assumption CIC }’ and Assumption
CIC 6:

i) Fy,, ,,)py>p0)(¥) and Fy, . (0)|p)>p(0)(y) are identified:

Fnl,gz(l)\D(1)>D(0) (y) = Hl(y)

and

Fy, . 0)D)>D(0) () = H(y).
i) E(Yy 0, (1) = Y3, 4,(0)|D(1) > D(0)) is identified:
TIV?CIO =E (Y;flagt(l) - -Yilvgt(o)’D(]‘) > D(O)) =

E (Y golD = 1) % B(Dty g, = 1) =B (£, 15y (B ip=1(Yig) ) 1D = 1) x B(Diy g, = 1)
P(‘DtLQt = 1) - P(Dtovgt = 1)

E <F;t11vgc|D:0 <FYto,gC\D:0(Yto,gt)) D= O) X P(Dtmgt =0)—-E (Ytl,gt|D =0) x P(Dthgt =0)
P(Dtmgt =0) - P(Dtlagt = 0) .

. 1 1 . . )
i) Vg € (01 By, ipw>p@(9) =y, 01p0)> pioy () 18 identified:

IvV-CIC -1 -1
Ty = By =000 ~ Fy, L 0)1p)>p(0)(@)
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=inf{y € Yy, o|D =1/H"(y) > q} —inf {y € Yy, 4.|D =0/H"(y) > ¢} .

Theorem CIC 2 states that it is possible to recover the distribution of both Y (1) and Y (0)
among compliers of the period 1 x test group cell from observable distributions. This makes it
possible to identify a LATE, as well as quantile treatment effects inside this population. To recover
the distribution of Y (1), I consider the distribution of Y among all treated observations of this cell.
Since those observations include both compliers and always takers, I need to “withdraw” from it the
distribution of Y among always takers. But this last distribution is not observed (because I cannot
distinguish compliers from always takers), hence the need to reconstruct it. On that purpose, I use
distributions of Y among always takers in the three remaining cells. Those three distributions are
observed since by definition treated observations in the three remaining cells must be always takers.
Then, identification relies on a similar double-matching process than Athey and Imbens’s theorem
3.1 except that it requires considering period x group cells among treated observations only. Take
an always taker in the period 0 X control group x D = 1 cell. Denote y its observed outcome, ¢
the quantile corresponding to y in the distribution of this cell, and u the realization of U for this
observation. By Assumption CIC 1, y = hi(u,tp). Now consider the observation at the gth quantile of
the period 1 x control group x D =1 cell, and denote y* its observed outcome. Since the distribution
of U is time invariant within group x D cells (Assumption CIC 47), those two always takers must have
the same u. Therefore, y* = hi(u,t;), which means that the gth quantile of the period 1 x control
group X D =1 cell identifies the period 1 Y (1) of an always taker with unobserved heterogeneity wu.
Now consider an always taker in the period 0 x test group x D = 1 cell with observed outcome y.
Since Y only depends on time, treatment status and unobserved heterogeneity (Assumption CIC 1)
and since hq (., o) is invertible (Assumption CIC 2), she must have the same unobserved heterogeneity
u than the first always taker. Thus for an always taker of the period 0 x test group xD =1 cell with
observed outcome y, it is possible to recover its period 1 Y (1): it is merely equal to y*. Therefore,
to recover the whole distribution of Y (1) in period 1 among test group always takers, it suffices to
translate the whole distribution of the period 0 x test group cell x D =1 from y to the corresponding

y* for each value of y.

Identification of the distribution of Y (0) among compliers of the period 1 x test group cell is
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obtained as follows. The distribution of Y'(0) in period 1 among observations which were untreated in
period 0 in the treatment group is reconstructed through a double-matching process across untreated
observations. But those observations include both compliers and never takers, hence the need to
“withdraw” the distribution of Y (0) among never takers. This is achieved easily since never takers in

this cell are all untreated observations so that this distribution is observed.

Finally, to deal with applications with potentially large share of always takers and where the
treatment rate also increases in the control group (see for instance Duflo [2001]), I give a second partial
identification result. I show that in such applications partial identification of quantile treatment effects
can be obtained through a strengthening of CIC-1V assumptions. First, the instrument Z should now
take three values, reflecting the fact that in period 1 the two groups received supplementary incentives
for treatment, but that the increase in incentives for treatment was stronger in the treatment group.
Consequently, Z =0<=T =1y, Z =1<=T =t1andG=g.and Z =2 <= T =t; and G = g.
There are now three potential treatment statuses: D(0), D(1) and D(2), hence the need to modify
Assumption CIC 6 into
Assumption CIC 6’: Monotonicity
D(2) > D(1) > D(0).

Moreover, 1 also need to take a common trend assumption on the treatment rate, which states that
if the treatment group had also received a low amount of supplementary incentives for treatment in
period 1, the share of observations treated would have followed the same evolution in the treatment
and in the control group between the two periods:

Assumption CIC 7: Common trend on treatment rate

P(Dyy,g,(1) = 1) = P(Dyy,4,(0) = 1) = P(Dy, 4, (1) = 1) = P(Dyy,.(0) = 1).

Under this modified set of assumptions, the distributions of Y (1) and Y'(0) within a specific population
of compliers, i.e. those who get treated if and only if they receive “strong” incentives for treatment,
are partially identified. Consequently, the average treatment effect and quantile treatment effects are
also partially identified but due to a concern for brevity I give explicit bounds for distributions only.
Proposition CIC 2: Partial Identification in the IV-CIC model

Under Assumption CIC 1, Assumption CIC 2, Assumption CIC 3’, Assumption CIC J’, Assumption
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CIC 6’ and Assumption CIC 7, Fﬂl,gt(l)lD(2)>D(1)(y) and Fy, . 0)|D2)>D(1)(y) are partially identified:

1,CIC—-1V 1,CIC—-1V
B~ < By, ip@>p) () < By

and
0,CIC—-1V 0,CIC—-1V
B> <y, 4 0p@>p1) () < By
with
1 FYtl gC\D:1(9>XP(Dt1,gc=1)
pLOTO-1V Fyy g1 D=1 (WXP(Dey g, =1)=Fy, D=1 FYto‘gc|D=1 : F(Dry 9o =D XPB(Dig, g, =1)—[P(Dt; ,g.=1)—P(Dsg, g, =1)]
- B P(Dtlagt:D*P(Dtoygt:1)*[]P(Dt119c:1)*P(Dt0,yc:1)} ’
_ Py, 0o D=1 XE(Dy g =)= (P(De; g,=1)~F(Dig, g, =1))
1,CIC—1V Fytl'gt‘DZl(y)XP(Dtl’gt:I)iFYtO'gt‘DZI(Fytz,gc‘D=1( o P(Dig,g. =D XP(Dtg,g,=1)
BLEIOTIY =
+

p(D,,l1gt:1)—P(Dt0,gt=1)—[n>(Dt1 ,gc:1)—1p(D,,DwgC=1)] )

—1 P(Dty,9.=9)
go.cIc—1v Fyt1,9t‘DZO(y)X]P(D"l‘”tzo)_FYto,gt‘D:(’(Fyto-,yc\D:()(Fytl)gc‘D:O(y)XW XP(Dtg.g;=0)~[F(Dt; g0 =0)~F(Dtg, g0 =0)]

H})(Dtlyyt :0)*]P(Dto»gt, :0>*[]P(Dt1»yc :0)7P(Dt0agC:0>]

and

Fy, D=0W) XP(Dyy, »:0)*(P(Dt ge=0)—P(Dy (.:0))

oy —1 t1,9¢ | 1:9¢ 1.9¢ 0:9c -~
Fytl)yt‘DZO(y)XP(DtLgt_O) Fyto,yt‘D:O FYto,yc\DZO F(Dtg,g.=0) xP(Dtg,g:=0)

0,CIC—IV

B+ =

P(Dt g, =0)—B(Dt(,g,=0)—[P(Dt; . =0)—P(Dt,9.=0)]

The bounds are obtained as follows. Under common trend, the DID on treatment rate (P(Dy, 4, =
1) = P(Dyy g, = 1) = [P(Dyy,9. = 1) — P(Dy, 4. = 1)]) identifies the size of a population of compliers.
Because the share of treated observations increases in the control group as well, it is no longer possible
to assume that treated (resp. untreated) observations are the same in the control group in period 0
and 1, i.e. that their distribution of U is the same. Period 0 observations can not be matched to their
rank counterpart in period 1, because the fact that some “compliers” got treated in period 1 might have
disrupted the distribution of U. But thanks to monotonicity, the size of this population of compliers
is known: it is equal to the change in the treatment rate between those two periods, and therefore
the maximum and minimum impact of those compliers on the rank of observations is known as well,
hence the partial identification result. Bounds will be tight in applications where the change in the

treatment rate in the control group across the two periods is small.
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Summary and conclusions

This paper provides new identification results applying to fuzzy DID and fuzzy CIC. Most of
the fuzzy DID results hold under a common trend assumption on the outcome only, whereas the IV
result commonly invoked in such settings holds under two common trends (on the outcome and on
the treatment) and a monotonicity assumption. This single common trend assumption is sufficient to
identify an ATT when there are no always takers, or at least its sign when there are “few” of them.
When the shares of always takers are “large”, supplementary assumptions must be taken. For instance,
identification of an ATT can be obtained under the assumption that ATT do not vary across time and
group. The milder assumption that the ATT in the control group did not change from period 0 to 1
substantially improves partial identification. This last result is of particular interest in applications
considering the extension of a policy because in such situations it is likely to yield a narrow identification
region. I present an application in which the bounds I derive allow drawing inference on the sign of an
ATT. This is because in this example, there are few always takers. Had there been more of them, the
identification region would have been too large to infer the sign of the ATT. Consequently, in a fuzzy
DID, common trend on Y is sufficient to obtain accurate information on the ATT when there are few

always takers, even if there are many never takers.

Similarly, in a fuzzy CIC, assumptions of the standard CIC model are sufficient for identification
when there are no always takers. When there are always takers, they are no longer sufficient. However,
it is possible to recover identification in applications with always takers but where the share of treated
observations remained stable between the two periods in the control group, even though this is at the

expense of slightly stronger assumptions.
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Tables

Table 1: Descriptive Statistics

Patients’ characteristics

% males

Age

% employed

% with no degree

Daily cigarettes smoked

FTND

% with AHAD>=11

% with DHAD>=11

% with chronic obstructive pulmonary diseases

Treatment prescribed
% prescribed nicotine patch
% prescribed varenicline

Cessation Outcome
Number of days between the first visit and the @Stmeasure

% of successful quits

N

Whole sample

48.8%
44.1
67.3%
17.0%
21.6
5.9
39.8%
11.9%
16.7%

53.4%
10.0%

86.7
49.3%

5299

2006

47.9%
44.6
65.3%
19.2%
217
5.8
40.3%
13.1%
16.2%

75.0%
0.01%

89.3
53.7%

1195

Test Centers

2007

47.9%
43.7
68.3%
21.0%
21.93
5.8
39.1%
11.7%
18.1%

45.5%
38.2%

96.7
56.9%

1303

P-value

0.98
0.08
0.11
0.25
0.60
0.29
0.54
0.29
0.19

<0.001
<0.001

0.05
0.11

Control Centers

2006

48.5%
44.0
65.3%
14.2%
22.1
6.0
42.2%
11.6%
17.5%

45.9%
0%

84.8
46.6%

1300

2007

50.4%
44.3
69.8%
14.1%
20.9
5.9
37.7%
11.2%
15.1%

49.7%
1.6%

77.6
41.6%

1501

P-value

0.30
0.52
0.01
0.98
<0.01
0.11
0.01
0.72
0.09

0.05
<0.001

0.03
<0.01

IFTND stands for Fagerstrom Test for Nicotine Defezre: and is a measure of patients’ degree of aotlict
2AHAD is the anxiety scale in the Hospital Anxietgression (HAD) scale, scored from 0 to 21, whichsed to identify

individuals with anxio-depressive disorders, wittheeshold score of 11 (see Zigmond et al. [1983]).

®DHAD is the depression scale in the Hospital AnkiBepression (HAD) scale, scored from 0 to 21, Whicused to
identify individuals with anxio-depressive disorglewith a threshold score of 11 (see Zigmond €tL8B3]).
4CO stands for carbon monoxide which is a biomafteetobecco us.

38



Table 2: Robustness Checks

2003-2004
2004-2005
2005-2006
2006-2007
2007-2008

Patients’ observable characteristics

% Males

Age

% employed

% with no degree

Daily cigarettes smoked

FTND

% with AHAD>=11

% with DHAD>=11

% with chronic obstructive pulmonary diseases
Measurement of smoking status

Number of days between the first visit and the last CO measure
% included

Threshold 1: 2%
Control centers thresholds Threshold 2: 3%

Threshold 3: 4%

Diff in diff
0.045
0.032
0.042
0.082
-0.043

Diff in diff

-0.020
-1.153
-0.015
0.019
1.454
0.237
0.033
-0.010
0.043

14.653
0.022

Common Trend

P-value
0.36
0.46
0.19

0.003
0.17

Placebo DID

P-value

0.46
0.08
0.57
0.36
0.02
0.06
0.22
0.59
0.04

0.004
0.30

1580
2499
4136
5299
4400

5299
5298
5299
5299
5299
5299
5299
5299
5299

5299
8581

P-value of B_ according to inclusion threshold

Threshold 1: 15%
0.04
0.01
0.11

Test centers thresholds
Threshold 2: 20%

0.03
0.01
0.08

Threshold 3: 25%
0.04
0.02
0.14
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Figures

Figure 1: Density of the prescription rate of varenicline
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Appendix A: Explicit expression of X

Let

X = ( YTG Y(1-T)G YT(1-G) Y(1-T)1-G) YD(1-T)G YDT(1-G) YD(1-T)1-G)

Dr¢G p1-7)G DT(1-G) DA-T)1-G) TG 1-T)G T(1-G) (1-T)(1-G) )
Let us denote § = E(X), V =V(X) , 9 the sample counterpart of 6 and V the sample counterpart of

V.

Since Y is bounded, all the coordinates of X have a variance. Therefore, according to the central limit

Theorem,
V(0 —6) % N0, V).
Let us denote

ﬂ_&_ﬁ+&+(ﬁ_M) XLQJF(LG_M) Xm_(ﬂ_m) S Z1L
r12 T13 %14 15 9 r13 r10 r14 r11 r15
8

h(z) = ,
LI Vi

12

which I define Vo = (1, z2, ¥3, 1425, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15) € R7 x (R*)3.
0 € R” x (R*)® and h is continuously differentiable over R” x (R*)® with jacobian H(z) € Ma 15.

I can therefore apply the delta method to state that:

BO(M, m) — BY(M,m) y
vnl — N(0; %)
E(Yi, 0| D =1) = M — (B(Y;, 4| D = 1) — M)

where ¥ = H(0)VH(0)'.
A consistent estimator of ¥ is & = H(9)V H(8)'.
Appendix B: proofs

Proof of Lemma DID 1:

V(i, ) € {tosti} x {gei gt} , Yij = Yij(1) x D +Y;;(0) x (1 = D) = (¥;;(1) — Y;;(0)) x D +Y;;(0),
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then,

DID = E[(Yy,g,(1) = Y21,6,(0)) D] = E (Y, (1) = Yt,4.(0)) D]
—E[(Yi1,6.(1) = Y1,6.(0)) D] + E [(Yig 6. (1) = Yi0,4.(0)) D]
+E(Yt1,6:(0)) = E(Ye,0.(0)) — E(Y2, 4. (0)) + E(Vig,4.(0))-

Under Assumption DID 1,

E(begt (O)) - E(Yto:gt (0)) - E(Y}/hgc (0)) + E(Y;o,gc (0)) =0.

Thus

DID = E(}/tl,gt(l) - Ygfl,!]t(o)l D= 1) X P(Dthgt = 1) - E(Y;fm!]t(l) - }/tD;gt(O)| D = 1) X P(Dtm!]t = 1)

- []E()/thgc(l) - nlvgc (O)| D = 1) X P(Dthgc = 1) - E()/t()agc(l) - Y%o»gc(()” D = 1) X P(Dtmgc = 1)] ’ (2)

hence the result.

QED.

Proof of Proposition DID 1:
Proof of i)

In the “no always takers” special case, P(Dy, 4, = 1), P(Dy, 4. = 1) and P(Dy, 4, = 1) are all equal to

0. Therefore, (2) can be rewritten as

DID = E(Y;fhgt(l) - 1/thgt(o)’ D = 1) X ]P)(Dthgt = 1)7

hence the result.
Proof of ii)

From (2),

DID = ATT;, 4, xP(Dy, g, = 1)—ATT} g, xP(Dyy.g, = 1) —AT T}, 9. XP(Dy, g. = 1)+ AT T}, g. XP(Dyy 9. = 1).
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If \V/(Z,]) € {t()vtl} X {gc;gt}7 ATT:L,] = ATTa then7

DID = ATT x DIDY,

hence the result.

QED.

Proof of Proposition DID 2:
Proof of i)

Assume that 3(m, M) € R?/P(m < Y(0) < M) = 1. I denote

A= E(Ytoygt(oﬂ D = 1)XP(Dt07gt = 1)+E(Yt1ygc(0)‘ D = 1)XP(Dt1,gc = 1)*E(Y}/079c(0)| D= 1)X]P)(Dto,gc = 1)'

This is the only quantity appearing in (2) which cannot be estimated from the sample and therefore

needs to be bounded.

Since m <Y (0) < M, A] <A< Af, with

Al_ =m X P(Dto,gt = 1) +m X ]P)(Dtl,gc = 1) — M x ]P)(Dto,gc = 1)

and

Al =M X P(Dyy g, = 1) + M X P(Dyy g, = 1) = m X P(Dyq g, = 1).

But for bounds to be sharp, the common trend assumption should hold, which implies:

0= E(Y;ghgt(()” D= 1) X P(Dtl,gt = 1) +E(Y2179t| D = 0) X (1 - P(Dtl,gt - 1))

_E(Y;fovgt(oﬂ D = 1) X ]P)(Dtoygt - 1) - E(Y;foagt| D = 0) X (1 - P(Dtoygt - 1))
_E(}/;flvgc(oﬂ D = 1) X P(Dtlygc = 1) - E(Y;flagc| D = O) X (1 - ]P)(Dtlzgc = 1))

+E(Yt079c (0)’ D = 1) X P(Dthgc = 1) + E(}/}ngc’ D = 0) X (1 - P(Dt07gc = 1))
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The only quantity in this equation which is both unobserved and does not enter into (2) is E(Yy, 4,(0)| D =

1). For common trend to hold, it should be equal to

A+ E(Yip| D = 0) % (1= P(Dyyg, = 1) + E(Vi, .| D = 0) x (1= P(Dyy 5, = 1)
B(Dr, g, = 1)

CE(Yy 0 D =0) x (1 =P(Dy, 4, =1)) + E(Yy,9.| D = 0) X (1 = P(Dyy 9. = 1))
P(Dtlagt - 1)

Since m < E(Y;, 4,(0)| D = 1) < M, this implies that we should have A; < A < AJ, with
Ay =mxXP(Dyy g =1) =E(Yiq,| D = 0) X (1 =P(Dyg g, = 1)) =E(Ysy 4[| D = 0) X (1 =P(Dyy 4. = 1))

FEY g, | D =0) x (1 =P(Dpy g, = 1)) + E(Yig .| D = 0) X (1 = P(Dyg g, = 1))

and
Ay = M XP(Dty g, = 1) =E(Yiyg,| D = 0) x (1=P(Dyy g, = 1)) —=E(Yy, .| D = 0) x (1=P(Dy, g, = 1))

FHE(Y: .| D = 0) X (1 = P(Dpy g, = 1)) + E(Yeo 5| D = 0) x (1 = P(Dyg g = 1))

Consequently, we should have
maz(A]; A7) < A < min(Af; A). (3)

Combining (2) and (3) and rearranging yields B_ and By, which are sharp by construction.

I show now that if none of the two bounds is informative then Pap > P(Dy, 4, = 1). If B_ and B
are uninformative we have BY(M,m) < E(Yy, 4,| D = 1) — M and B%(m, M) > E(Yy, 5| D = 1) — m.
Subtracting those two inequalities yields Pa7 > P(Dy, 4, = 1). This implies that P47 <P(Dy, 4, = 1)
is a sufficient condition to have that at least one of the two bounds is informative.

To show that this condition is not sufficient to have that the two bounds are informative, it suffices to
consider the following DGP. M =1, m =0, P(Dy, 4, = 1) =1, P(Dyy g, = 1) = P(Dy, 4. = 1) = 0.1,
P(Dig.g. = 1) = 0, E(Ys, 4, (1)| D = 1) = E(Yy,,4,(0)| D = 1) = 1, E(Yy,0,(0)| D = 1) = E(Y}, 4. (0)| D =

44



1) = 0.5, E(Ys,4,(0)| D = 0) = E(Y3,,4.(0)|D = 0) =1, E(Y},4.(0)] D = 0) = 0.9. Those are all
the quantities which are needed to compute B_ since the remaining expectations cancel out in the
calculation. Par = 0.2 < P(Dy, 4, = 1) = 1, the common trend assumption holds (1 x1—-0.5x0.1—-1x

0.9-0.5%x0.1-1x0.940.9=0), and B_ is not informative since it is equal to E(Y}, 4,| D =1) — M.
Proof of ii)

If I(m, M) e RZ/P(m <Y (0) < M) =1,
E(Ytlygc‘ D = 1) - M S ATTtlygc S E(Ytlagc| D = 1) —m

and

E(Vipg| D =1) = M < ATTy, 5, < E(Vipq| D= 1) —m.

If ATT;, 4. = ATTy, 4. = ATT,,, these two inequalities imply that
maz (E(Yy, g | D = 1);E(Yigg.| D = 1)) = M < ATT,,

and
ATTQC S mZn (E(Yzlygc| D = 1);E(n0agc| D = 1)) —m.

Moreover from (2) we get:

DID + ATTy, g, X P(Dyy g, = 1) + ATTy, X (P(Dy, g, = 1) = P(Dyy g, = 1))
]P)(‘Dtlvgt = 1)

ATTthgt -

Therefore, combining this last equality with the two preceding inequalities yields B! and B? as lower
or upper bounds to ATT}, 4, depending on the sign of P(Dy, 4. = 1) — P(Dy, 4. = 1). For some DGP,
min(B'; B) might be smaller than E(Yy, 4| D = 1) — M, which means that min(B'; B?) is not a
sharp lower bound, hence the need to set B. = max (min(B'; B*); E(Y}, 4| D = 1) — M) to ensure
sharpness.

Finally, I show that P(Dy g, = 1) + |P(Dy, 9. = 1) = P(Dyy,9. = 1)| < P(Dyy g, = 1) is a sufficient
condition to have that at least one of the two bounds is informative. Assume P(Dy, o, = 1) —=P(Dy, 4. =

1) > 0. None of the two bounds is informative if B! < E(Y}, 4| D = 1) — M and B? > E(Y;, 4| D =
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1) — m. Subtracting those two inequalities yields
(M —m) x (P(Dyy,g, = 1) + P(Dy, g, = 1) = P(Dyy g, = 1))

+ (min (B(Ye, g.| D = 1);E(Yig.g.| D = 1)) = maz (E(Yy, .| D = 1) E(Yy, 6| D = 1)) X (P(Dyy 9. = 1) = P(Dyg 9. = 1))
> (M —m) xP(Dy, 4, =1) (4)

Since (4) is a necessary condition to have that none of the bounds is informative, the converse inequality
is sufficient to have that at least one of the two bounds is informative. But P(Dy, g, = 1) + P(Dy, 4. =
1) = P(Dyyg. = 1) < P(Dy, 4, = 1) implies the converse inequality, hence the result. The proof is
symmetric if P(Dy, 4. = 1) = P(Dyy 4. = 1) < 0.

QED.

Proof of Proposition DID 3:

Proof of i)

Under Assumption DID 1 and the supplementary assumptions that 3(m, M) € R?/P(m < Y (0) <

M) =1, ATT;, 4, € [B—; By] according to the first part of Proposition DID 2.

a
nl—%TooP(ATTtl gt > LB( )) > nl_z)m@P(B > LB(1 )) 1-— 5

Similarly,
lim P(ATT}, g, SUB(* ) > 1 %
which implies that
nl—Z>Too[P(LB(1 o) < ATT;, 4, < UB(1 )) >1—a.

Therefore, CI? = LBg’_a); UBg*_a)} is a CI for AT}, 4, with (1 — )% asymptotic coverage.

Then, consider IP’(UB(I*2 y S ATTy, 4, < UB(1 20<))

If ATT}, ,, = B_,

< B_)— lim P(B_>UBP*

B_
lim P(UB Jlam (1-20)

B B_
n—-+o0o (1 2« ) <B_ S UB tga)) = lim P(UB
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since the second term converges to 0.

If ATT;, 4, = By, the same argument holds and [lim IP’(UB(1 20) < ATT;, 4 < UB”

n—-+00

(1— 2a)) l-a

as well.

If B_ < ATT}, ,, < By,

B

B
< ATTy, ,, <UB(Y,

(1_261)} is also a CI for ATT}, 4, with (1 — a)% asymptotic coverage.

Therefore, lzm IP’(UBB_

n—-+00 (1-2a)

cr [LB UB

a)) > 1 — a whatever the value of ATT}, 4, so that

(1— 20{)7

Proof of ii)

The proof follows the same steps as in i), once noted that under Assumption DID 1 and the supple-
mentary assumptions that 3(m, M) € R?/Vk € {0;1} P(m < Y(k) < M) = 1 and that ATT}, ;. =
ATTy 4., ATTy, 4, € [B/_; B;} as per the second part of Proposition DID 2.

QED.
Proof of Proposition DID 4:

By the delta method,
NG (BO(M, m) — BY(M, m)) 4 N (0;02).

By the central limit theorem,
s d
Vi (Bl D =1) = M = (E(Yiy g D = 1) = M) ) 5 N(0:03).

It BO(M,m) > E(Y;, 4| D = 1) - M,

—

N (E\_ - B_> —Vn (maaz (BO(M, m);E(Yy, 4| D = 1) — M) — maz (BO(M,m); E(Y;, 5,| D = 1) — M))

—

—Vn (BO(/J\Zm) ~ B'(M, m)) +vn (maa: (BO(M, m);B(Yy, 4| D =1) — M) - BO(/M\,m)) .

—

The second term is o,(1) because max (BO(M, m); E(Ythgt| D=1)- M) BO(M m) with probabil-
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ity approaching 1. This implies the result.
If BY(M,m) < E(Yy, 4| D = 1) — M, the proof is symmetric.

If BY(M,m) =E(Yy, 4| D=1)— M,
VN (BA, - B,) — maz (\/N (BO(/J\fm) ~ B(M, m)) VN (E(Ytl,gtw =1)— M — (E(Y,, 4| D =1) — M))) .
Due to the continuous mapping Theorem,

maz (x/ﬁ (Bmm) ~ B(M, m)) VN (E(Ythgtw =1)— M — (E(Yy, 4| D =1) - M))) < S = (maz (N*; N?))
where < N; N > ~N(0,%).

QED.

Proof of Proposition DID 5:

In(n)
\/ﬁ

P(B_ € CI) =P (B_ €CI* |RB(Y;, 0| D=1)— M+ < BO(/J\Zm)> P (E(YtMD =1)— M+ in(n) BO(/J\Zm))

N

o~

n(n) < B‘)(/J\Zm) <R, |D=1)— M+ In(n)

NI ﬁ)

+P (B_ €CIP |E(Y;, 4| D=1)— M —

In(n)
\/ﬁ

xP @(Yn,gtlD =1)- M- < BO(M,m) <E(Yy, 4| D =1)— M + ln(n))

Vvn
In(n)
vn

It BO(M7m) > E(Y;fl,gt|D = 1) - M7

—— In(n)

BO(M,m) + NG

+P <B ECIC|BWm)+ <IE(Yt1,gt|D:1)—M>><IP

7N

<BlYiyqD=1) - 1),

P (B(Yiyl D = 1) - 31+ ) < 5

=P (v (BOMm) = B°(M,m)) = Vi (E(Yey 01| D = 1) = E(Yiy .| D = 1)) > In(n) = (B°(M,m) = (E(Yey 00| D = 1) = M)) V)

I denote V,, this sequence.

lim In(n) — (B°(M,m) — (E(Y}, 4| D =1) — M)) y/n = —cc.

n—-+o00
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Consequently, Vo € R, Ing € N/n > ny =
P (Vi (BY(M,m) — B(M,m)) = v/ (E(Viy g D =1) = M = (E(Yey 0| D =1) = M)) > 2) <V,
Therefore,

lim P (ﬁ (BO(/MTm) — B(M, m)) S (E(Ythgt| D=1)—M— (E(Y;, 4| D=1) - M)) > g;) < lim V,

n—+00 n—-4o00

A delta method and the central limit theorem imply that

lim P (\/ﬁ (BO(/MTm) ~ B(M, m)) —Vn (fa(y;hgt| D=1)—M— (E(Yy 4| D=1) - M)) > x) —1-F(z),

n—-+o0o

where F(.) is the cdf of a random variable with a normal distribution.

Since this holds Vx € R, we can let  go to —oo which yields 1 < lim V,,. Therefore,

n—-+o0o

In(n)

lim P <1E(Yt1,gt\ D=1)— M+

n—-+o0o

< BO(/J\Zm)> —1,

which implies that

lim P <B— € OTP | B(¥iy | D = 1)~ M — ™) < O n) < B(v,, | D= 1) — M + ”‘(”)) 0

n—-+o0o

and

) —— In(n) =
Lim P (BO(M, )+ = <E (Vi D=1) - M> —0.

Consequently,
lim P(B_ € CI)= lim P(B°(M,m) e CI*) =1-a.

n—-4o0o n—-+o0o

If BO(M,m) =E(Y, 4,/ D=1) — M or BY(M,m) < E(Y, 5| D = 1) — M, the same type of reasoning
yields livl@ P(B_ € CI) =1 — « which completes the proof.
n—-roo

QED.

Proof of Lemma CIC 1:
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The proof is fairly straightforward. Assume for instance that Assumption CIC 6 does not hold because

P(Dy, 4, = 0) < 1. Under Assumption CIC 1 to Assumption CIC 4, Fy,  0)(y) = Fy,, , ) (F;t;& " (wa (0)(y)>>

Fnlygc (y) = Fnl,gc(o) (y) X ]P(Dthgc = 0) + le,gc(l) (y) X (]‘ - ]P)(‘Dtlagc = 0)) Since P(Dtlygc = O) <

1, this is not necessarily equal to Fy, _ (0)(y). Therefore, Fy, _(0)(y) is not necessarily equal to

-1
P (Bt (Frip, @)

QED.
Proof of Theorem CIC 1:
Proof of i)

In the no always takers special case,

FYtngt (F;ti,gc (Fytlagc (y))) = FYtO«,gt(O) (F;ti,gc(O) (FYtl,gc(O) (y)>> .

According to part i) of Athey and Imbens’s Theorem 3.1, this is equal to Fy, .o (y), which can be

rewritten as

Fy, o, ©p=14) X P(Dt, 9, = 1) + Fy, . (0)p=0(y) X P(Dy,,g, = 0).

Rearranging this last equation yields the result.
Proof of ii)

In the no always takers special case,

E (V) B (F7 . (P Vo)) ) = E Viwg)~E (Fr! o) (P o0 (Vo (0) ) = B (Yoy )~ (Yo (0)

according to part iii) of Athey and Imbens’s Theorem 3.1. This last expression can be rewritten as
]E(}/tl,gt(lﬂ Dt1,gt = 1) X P(Dthgt = 1) + E(Y;‘/Lgt (0)| Dthgt = 0) X P(Dthgt = 0)

_E(}/tl,gt(o)‘ Dtl,gt = 1) X P(Dtl,gt = 1) - E(}/tl,gz(oﬂ Dthgt = O) X P(Dtl,gz = 0)

which is equal to

E(Y;fhgt(l) - nlvgt(0)| Dthgt = 1) X ]P)(‘Dtlvgt = 1)7
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hence the result.

Proof of iii)

CIC _ -1 1
K - Ythgt(l)w:l(q) B FYth (0)|D=1 (Q)
=By o (@) = inf {y € Yiu 0/ Py, 01 (0) = 0}
= By o= (@) = inf {y € o190/ Fyiy 01 0=1(Y) = q}

because of Assumption CIC 4 and because of the definition of the no always takers special case,

= F;tll’gt\Dzl(Q) - an {y € Ytl,gc/G(y) > Q}

because of 1).

QED.
Proof of Proposition CIC 1:

Under Assumption CIC 1 to Assumption CIC 4,

—1
Fy, ,®) =Fy, .0 (Fytoygc(()) (Fnl,gc(O) (y)>) :

Fy, W) =Fy, . p=0(y) X P(Dt, 4. = 0) + Fy, , (0)p=1(y) X P(Dt, 4. = 1).

Since 0 < Fy, (o) p=1(y) <1,

Fy, . p=0(y) X P(Dt, 4. =0) < Fy,  0)(¥) < Fy;, . p=0(y) X P(Dyy,9. = 0) + P(Dy, 4. = 1).

. -1
Since FYtO,_ .

o (0) 18 weakly increasing,

—1 —1
By e (i p=0®) X B(Ds g, = 0)) < Pl o) (B )(0)
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and

Fy. o (Fnl,gcw) (y)> <F o) (Fnl,gc|D=0(y) X P(Dty,g. = 0) + P(Dyy g, = 1)) (6)

Y't(]»gc

Then,

Fy, .0W) = Fy, . p=0(y) X P(Dtyg. = 0) + Fy, , (0)p=1(y) X P(Dty9. = 1).

Since 0 < Fy, . (o)p=1(y) <1,

FYto,gchZO(y) X P(Dt07gc = 0) S FYto,gc(O) (y) S F}/to,gc‘DZO(y) X HJ)(‘Dtmgc = O) + ]P)(DtO:gc = ]‘)

Therefore,

q q — ]P(Dt Je — 1)
{y/FY%O,gchzo(y) > W} - {y/FYto,gc(O)(y) > q} - {y/FYEO,gCD:O(w > PO, g(lg: 5

which implies:

-1 q—P(Dyyg. =1) -1 -1 q
2 < < _ .
FYto»gc|D:0 ( P(Dty,9. = 0) - FYto’fic(O)(q) = Fno’gc‘Dzo P(Dyy,g. = 0) )

Combining (6) and (7) yields:

F_l FY'tl,gc‘D:O(y) X ]P)(Dtlygc = 0) - ]P)(Dtovgc = 1) < F—l (F ( ))
Y%OygelD:O P(Dto’gc = O) - Y}O,gc(o) }/tl!gc(o) y
and
F_l (F (y)) < F_l FYfvaC‘DZO(y) X ]P)(Dtl:gc = 0) + ]P)(Dtl,gc == 1) ‘ (8)
Yig,9¢(0) Yi1,9.(0) = " Yig,9.1D=0 P(Dto,gc — 0)
Then,

Fy, . 0W) =Fy, ,1p=0y) X P(Dyg, = 0) + Fy, ,, ©0)p=1(y) X P(Dy,9, = 1).

Since 0 S FYtngt (0)‘[):1 (y) S 1,
Fy, g 10=0y) X P(Dio 5, = 0) < Fy, . 0)() < Fy,, ,,1p=0(y) X P(Dig g, = 0) + P(Dig g, = ). (9)
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Combining (5), (8) and (9) yields:

Fy, . p=0(y) X P(Dy, 4. = 0) = P(Dyy g, = 1)
—1 t1,9¢ 1,9c 0,9c o
Yom! D=0 ( Yig.ge|D=0 ( - P(Dty g, = 0) <P(Dio.g = 0) < By, 0)(9)
and
_ Fy, . 1p=0(y) X P(Dy, 4. = 0) + P(Dt, 4, = 1)
B0 W) < Py, 1p=0 (FYti,gc|D=° ( | P(D; gg =0) g )) $FDroge = O1HF(Dioac =1,

which implies

BYC < Fy,, , p-1(y) < BY'C

with
Fy | D=0 ) XB(Dy; g, =0)~B(Dyq, g, =1)
-1 t1,9 ’ ) _ _
BCIC FYtO’gt |D=0 (FYthgc |p=0 ( - P(Dy),90=0) *P(Dig.g, _0)7FYt1»9t p=0(y)xP(Dty,6,=0)
- o P(Dty,9,=1)
and
Fy, | D=0 W) XP(Dty g, =0)+P(Dty g.=1)
-1 t1,9 — _ —
cic Fyto’gt \p=0 <Fytovgc |D=0 ( o P(Dtg,9.=0) XP(Dig,g¢ _O)JFP(DtO’gt_l)iFYtLgt D=0 (¥) XP(Dty,4,=0)
BJF - P(Dt1~,9t:1)
QED.

Proof of Theorem CIC 2:
Proof of i)
To alleviate the notational burden, I introduce U, LU |G = g.

By assumption Assumption CIC 2, h;(u,t) is invertible with respect to u. Denote hj_l(u; t) its inverse.

V(t,g,5,k) € {to;t1} x {ges g} x {031},
FYt,g(j)|D(0)=k(y) =P (hJ(Uv t)Sy’G =9, T= t, D(O) = k)

=P (Ughj_l(y;t)]G — ¢, T =t,D(0) = k:)
—P (Ughj—l(y;t)yc; = ¢,D(0) = k:)

by assumption Assumption CIC 3’.
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Therefore,

Fy, ,(7)p0)=k¥) = Fu,po=k(h;  (y;1)). (10)

Let 57 and k be equal to 1.
I apply (10) to all four combinations (¢,g) € {to;t1} X {gc; g¢}-

First, letting (¢, g) = (to, gc) and substituting y = h1(u, to) yields Fy, _ 1)p)=1(h1(u,t0)) = Fy, |p(0)=1(1)-

Then applying F;%;,gc(l) _,(.) to each side, we have, Vu € U|G = g., D(0) =1,

|D(0)

h1(uyt0) =K} (1)|D(0)=1 (FUgC\D(O):l(U)) : (11)

3/75079c

Second, letting (t,g) = (t1,g.) and using the fact that Vy € Yy, ,.|D(0) = 1, by *(y; 1) € Uy, | D(0) = 1,

and applying the transformation F(jgl |D(0):1(.) to both sides of (10), yields
FU_glc‘D(o)zl(FYtl,gC(l)\D(O)zl(y)) = hi'(y; ta). (12)

Combining (11) and (12) yields, Vy € Yy, 4.|D(0) =1,
RT3, t0) = Bt ) poyet (B e 1iD0)=1(9) ) - (13)
Third, apply (10) with (¢, g) = (to, ¢:) and substitute to get y = hj(u,to) to get
Fy, . p©=1(h(u, t0)) = Fy, |p0)=1(w). (14)
Fourth, apply (10) with (¢, g9) = (¢1,9:) to get
Fy, ,p0)=1(y) = FUgt|D(0)=1(h1_1(?/; t1)). (15)

Therefore, combining (14) and (15) yields

Fy, ,,p0)=1(y) = Fno,gt(1)|D(0):1(h1(hf1(y; t1),t0))- (16)
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Since by Assumption CIC 4’ Yy, 4,|D(0) =1 C Yy, 4.|D(0) = 1, substituting (13) in (16) we finally get

Fy, ., p©)=1y) = Fy,, ,,1p=1 (F;t;gcmzl (Fnl,gcwzl(y))) (17)

once noted that FYtO,gt(l)\D(O):l(~) = FYtO,gt\D=1(~)7 F;t;,gt(l)\D(O):l(‘) = F;t;,gt\D:l(') and FYtl,gc(l)lD(0)=1(-) =

Fy, . p=1().

Letting j and k be equal to 0 and can show that

Fy, ,@p0)=0(y) = Fy, ,.1p=0 (FQ;’QC\DZO (le,gc\pzo(y)» : (18)
Then,
Fy, . p=1y) = Fy, ., )pa)=1(y)
= Fy, .. (1)p1)=1,0(0)=1(y) xP(Dy, ,(0) = 1| D(1) = 1)+ Fy, . 1)p1)=1,D(0)=0(y) xP(Dy, 4,(0) = 0] D(1) = 1).
By Assumption CIC 6, this is equal to

P(Dy, 4,(0) = 1) P(Dt,,4,(1) = 1) = P(Dy, 4, (0) = 1)
Fy, . )p©)=1(y)x P(Dpy g (1) = 1) +Fy,, 0, (1)D(1)=1,D(0)=0(¥) X P(Dy, o, (1) = 1)

By Assumption CIC 3’, this can be rewritten as

=1) P(Diy 6, (1) = 1) = P(Di,4.(0) = 1)
F . F _ _ 5 )
thlagt (1)|D(0)71(y) X ]P)(Dtl,gt(l) g 1) + }/tla%(1)|D(1)711D(0)70(y) x ]P)(Dtl,gt(]‘) — 1)

According to (21), this is equal to

i P(Diy, (0) = 1)
1 t0.9
FYtngt|D:1 (Fytoagchzl <FYtl’gC‘D:1(y))) % ]P)(D: QZ(l) = 1)

P(Dyy . (1) = 1) = P(Dyy,4,(0) = 1)
+Fytl,gt(1)‘D(1):1,D(0):0(y) X : P(Dtl,gt(l) _ f)

Rearranging this last equation yields the first part of i).
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Now, I prove the second part of i). According to (18),

-1 .
Fy,,0,1D=0 (Fno,gcm:o (Fnl,gcwzo(y))) = Fyi, 4, 01D(0)=0(Y)

= Fy, . )|D1)=0,0(0)=0(y) xP(Dy, 4,(0) = 0] D(1) = 0)+Fy, , (0)p(1)=1,D(0)=0(y) xP(Dy, 4,(1) = 1| D(0) = 0).

By Assumption CIC 6, this is equal to

P(Dty,4.(1) = 0) P(Dty,.(1) = 1) = P(Dt,4,(0) = 1)
Ey,, 4 (0)[D(1)=0(Y) X P(Dyy 0, (0) = 0) +Fy;, 4, 0)D(1)=1,D(0)=0(Y) X P(Dy, 4 (0) = 0)

By Assumption CIC 3’, this can be rewritten as

0) P(Dy,g,(1) = 1) —P(Dyy,4,(0) = 1)
F _ F Do) ’ :
Yo OID=0W) X g = gy =) TV @D =1.00=0() X P(Dsy.(0) = 0)

Rearranging this last equation yields the second part of i).
Proof of ii)
From (21), one can show that Y, 4,(1)]D(0) = 1 and F;tll,gchzl (FYtO,gc|D:1(1/t07gt)) |D =1 have the

same cdf. Similarly, one can show from (18) that Y;, 4,(0)|D(0) = 0 and

-1

Fy, 0| D=0 (Fyto . |D:0(Yt0’gt)> |D = 0 also have the same cdf. Therefore, taking expectations yields
1,9c == ge

E (Y0 ()IDO) = 1) =B (F! 5y (B o=t (Yiew) ) 1D =1) (19)
and

E (Yo (0)D(0) = 0) = E (Fy! g (P o ip=0(Yeo)) 1D = 0) (20)
Then,

E (Vi 0D =1) = E (Y 4|D(1) =1)
= E (Y1, (D)[D(0) = D(1) = 1) x P(Dy, 4,(0) = 1| D(1) = 1)

+E (Yiy,0./(D]D(1) > D(0)) x P(Dt, 4,(0) = 1] D(1) = 1).
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By Assumption CIC 6 this is equal to

P(Dy,g,(1) = 1) —P(Dy, 4, (0) = 1)
P(Dtlvgt(l) = 1)

+E (Y4, (1)|D(1) > D(0)) %

P(Diy,6,(1) = 1) = P(Diy,4,(0) = 1)
P(Dyy . (1) = 1)

E (Vi (1)]D(0) = 1)x

By (19) this is equal to

-1
£ <FY’51vgc‘D=1 (Fytoygc‘Dzl(tho,gt)) |D = 1) X

P(Dy,,5,(1) = 1) = P(Dyy,4,(0) = 1)
P(Dtlygt(l) = )

FE (Yi,6.(1)|D(1) > D(0)) x

Rearranging this last equation yields:

E (Yiy |0 = 1) x B(Diyg, = 1) =B (P! py (P 021 (Vi) ) 1D = 1) x B(Di, = 1)

E (Y4, (1)[D(1) > D(0)) = P(Dy,.g, = 1) — P(Dyy.g, = 1)

Similarly, one can show that

E(Fy! ) co (Frig i0=0(Yies)) 1D = 0) X B(Dyy g, = 0) = E (Vi ,[D = 0) x B(Dy, 5, = 0)

E(Y;fhgf(OND(l) > D(O)) = P(Dt g = 0) _ ]P)(Dt o= O)

Combining these last two equations yields the result.

Proof of iii)

=yl owspo)(@ = By 00> pe) (@
=inf {y € Yy, 4,(1)[D(1) > D(0)/Fy, . 1)p)>D(0)(¥) = (J}
—inf {y € Y4, 4,(0)[D(1) > D(O)/Fy,, 01p()>b(0)(¥) > 4}
=inf {y €Yy, 0,|D =1/Fy, , 1)p1)>p0)(y) = Q}—mf {y € Yy, g.|1D = 0/Fy, , ©)p1)>D©)(Y) = Q} :

The first change in support holds because Yy, 4,(1)|D(1) > D(0) C Yy, 4,|D = 1: D(1) > D(0) =
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D(1) =1, and D = D(1) in the treatment group x period 1 cell.

The second change in support holds since Yy, 4, (0)|D(1) > D(0) C Y, 4.(0)|D(1) > D(0) because
of Assumption CIC 4’. Moreover, D(1) > D(0) = D(0) = 0 and D = D(0) in the treatment
group x period 1 cell, so that Y¢ 4.(0)|D(1) > D(0) C Yy, 4.|D = 0. Combining those two steps
vieldsY;, 4,(0)[D(1) > D(0) C Yy, 4.|D = 0.

Finally, using the formulas in i), we get that this last expression is equal to

inf{y € Yy, 0,|D=1/H'(y) > q} —inf {y € Yy, 4.|D = 0/H(y) > q}.

QED.
Proof of Proposition CIC 2:

As shown in the proof of Theorem CIC 2,

—1
By, o 1p@)=1(¥) = ;g 4, ID0)=1 (Fno,gcm(m:l (Fnl,gcw(m:l(y))) (21)

1 1 .
By 0o 01p)=1() = By i0=10)s By ypoy=1() = £y, p=1 () but By, o yipo)=1(-) is not

observed.
Fy, .. p=1(%) = Fy, ., (1)p(1)=1,0(0)=1(4) X P(Dy,,4.(1) =1, Dy, 4.(0) = 1[ D(1) = 1)

v, 4. (0D1)=1,00)=0(4) X P(Dy,,4.(1) =1, Dy, 4.(0) = 0] D(1) = 1)

By Assumption CIC 6’ and Assumption CIC 3’, this is equal to

58



Since 0 < Fy; . (1)|p()=1,0(0)=0(¥y) < 1 and P(Dy, 4.(1) = 1) = P(Dy,,4.(0) = 1) = 0,

Fytl’gch:l(y) ~ P(Dtlvgc =1) - (P(Dthgc =1)- P(Dt()vgc =1)) < I\ (y)
P(Dto,gc = 1) = Py 6. (DID(0)=1\Y

and

FYt1,9c|D=1(y) X P(Dy, 9. = 1)
Fnl,gc(1)|D(0):1(Z/) = P(Dyy g, = 1) .

Plugging (22) into (21) finally yields

. o Fy, . 1p=1y) X P(Dt, 4. = 1) = (P(Dyy,9. = 1) = P(Dyy 9. = 1))
Yoo D=1\ ¥ig.gc| D=1 P(Dyg,9. = 1)

and

Fy, —1(y) X P(Dt; 4. = 1)
—1 t1, C‘D 1 1,9c
o Ip©)=1() < Fy, D=1 (Fyto,gcu_l ( = F(Dog = 1) : (23)

Then,

Fy, 1p=1y) = Fy, , 1)p@)=1(y)
= Iy, . (1)D@)=1,0(1)=1,0(0)=1(4) X P(Dt,,4,(2) =1, Dy, 4,(1) = 1, Dy, 4,(0) = 1| D(2) = 1)
+Fy,, ,, ()ID@)=1,0(1)=1,D(0)=0(Y) X P(Dt,,4,(2) = 1, Dy, 4,(1) = 1, Dy, 4,(0) = 0] D(2) = 1)
+Fy,, ,,(0)D@=1,01)=0,0(0)=0(y) X P(Dt,,4,(2) =1, Dy, ,4,(1) = 0, Dy, ,4,(0) = 0] D(2) = 1)

By Assumption CIC 6’, this is equal to

+FYt1’gt(1)|D(1):1,D(0):0(y) X P(Dtl gt(2) =1)

P(Dy, 4,(2) = 1, Dy, 4,(1) = 0)
+FYtl,gt(1)|D(2)=1,D(1)=0(y) X fP)(Dt1,gt(2) — t)
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By Assumption CIC 6’, Assumption CIC 3’ and Assumption CIC 7, this can be rewritten as

P(Dto,gt (0) = 1)
By amip=10) X 5p * 521

P(Dy, 4.(1) = 1) = P(Dy, 4.(0) = 1)
+Fy,, ,,(1)|D(1)=1,D(0)=0(Y) X P(D;, ,,(2) = 1)

+FYtl,gt(1)\D(2):17D(1):0(y)x P(Dtl,gt (2) = 1) - [P(Dto,gt (O}I)D(ztll?gjzg(l:)tf)gc(l) = 1) - P(Dtmgc(O) = 1)] .

Since 0 < Fy, . 1)\p(1)=1,p(0)=0(y) < 1 and using (23) we finally get

LCIC—IV LCIC—1V
B~ < Fy,, ,,)p@=1,001)=0(y) < BY (24)

with
Fy- |D=1(W)XP(Dty,g.=1)
-1 t1,9c 1:9¢ _ _ _
Bl CIC—IV FYtlygt|D:1(y)XP(Dt1,gt:1)_FYt0‘gt\D:l(Fytoygc‘D=1< 1 F(Drg,90=1 )) XP(Dtoﬂf,*1)—[]P’(Dtl,90*1)—P(Dtoygc*1)]

P(Dtl ,gtzl)_P(Dtoygt :1)_[P(Dt1‘gc:1)_P(Df()ygc:1)]

and
Fy, D=1 WXP(Dy g,=1)=(F(Diy, g, =1)—P(Dig,g,=1))
F _ P(D =1)—F | FSt t1.9¢ P(D =1
BLCIC-1V _ Yiy,9010=1 (W) XF(Dey,0,=1) Yto’gt‘DJ( Yto,gc\Dzl< F(Dig,g0=1 XP(Deg,g,=1)
+ P(thgtzl)_P(Dtoygtzl)_[]p(Dtl>9c=1)_P(Dio‘gc:1)]

Similarly, one can show that

0,CIC—-1V 0,CcIC—1V
B= < Iy, ,,(0)D@=1,0(1)=0(y) < BY (25)
with
_ B(Dy¢, g, =0)
BO,CIC—IV Fyflegt 1D=0(¥)XP(Dey g, :0)7Fyto,gt ‘D:()(Fyt(l),gu ‘D:()(Fytl-ﬂc 1p=0(y) % W)) XP(Dio .9, :0)7[P(Dtl’gczo)*P(Dto,yc :0)}
- - P(Diy,9,=0)—P(D1y,4,=0)—[P(Diy 9. =0)—F(Dy,g,=0)]
and
B Fy, o 1D=0W)XB(Dty g, =0)—(B(Dty g, =0)~F(Dy g, =0))
0,CIC—1IV FYtl’gtlD:O(y)XP(Dtl‘gtZO)_FYtO’gt‘D=O<Fyt(l),qp‘D:0< o P(Dtg,g.=0) XP(Dtg,9,=0)
BTV = - :
+ P(D¢y,g,=0)—P(Dyy,9,=0)—[P(Dt;,9,=0)—P(Dty,g,=0)]
QED.
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